• Original Articles • Previous Articles Next Articles
Kai Qu^{1,2}, Renhong Wang^{3}
Kai Qu, Renhong Wang, Chungang Zhu. FITTING C^{1} SURFACES TO SCATTERED DATA WITH S_{2}^{1} (Δ_{m,n}^{(2)})[J]. Journal of Computational Mathematics, 2011, 29(4): 396414.
[1] R.E. Barnhill, Representation and Approximation of Surfaces, in: Mathematical Software III(J. R. Rice, Ed.), Academic Press, Newyork, 1977, 69120. [2] C. de Boor and J.R. Rice, Least Squares Cubic Splines Approximation. I: Fixed Knots, CSD TR20, Purdue Univ., Lafayette, 1968. [3] C. de Boor and G.J. Fix, Spline approximation by quasiinterpolants, J. Approx. Theory, 8 (1973),1945. [4] M.D. Buhmann, Radial functions on compact support, Proc. Edinb. Math. Soc., 41 (1998), 3346. [5] M.D. Buhmann, A new class of radial basis functions with compact support, Math. Comput., 70(2001), 307318. [6] F. Cheng and B.A. Barsky, Interproximation: interpolation and approximation using cubic splinecurves, Comput. Aided Design, 10 (1991), 700706. [7] R. Franke and G.M. Nielson, Smooth interpolation of large sets of scattered data, Int. J. NumericalMethods in Eng., 15 (1980), 16911704. [8] R. Franke and G.M. Nielson, Scattered Data Interpolation and Applications: A Tutorial andSurvey, in: H. Hagen and D. Roller (Eds.), Geometric Modelling: Methods and Their Application,SpringerVerlag, Berlin, 1991, 131160. [9] H. Hagen and G. Schulze, Automatic smoothing with geometric surface patches, Computer AidedGeometric Design, 4 (1987), 231236. [10] R. Hardy, Multiquadratic equations of topography and other irregular surfaces, J. Geophys. Res.,76:8 (1971), 19051915. [11] J. Hoschek and D. Lasser, Computer Aided Geometric Design, A. K. Peters, 1993. [12] M. Kallay, A method to approximate the space curve of minimal energy and prescribed length,Comput. Aided Design, 19:2 (1987), 7376. [13] M. Kallay and B. Rarani, Optimal twist vectors as a tool for interpolating a network of curveswith a minimum energy surface, Comput. Aided Geom. D., 7 (1990), 465473. [14] C. Lawson, Software for C^{1} surface interpolation. in: Mathematical Software III (J. R. Rice, Ed.),Academic Press, Newyork, 1977, 161194. [15] S. Lee, G. Wolberg, and S.Y. Shin, Scattered data interpolation with multilevel Bsplines, IEEET. Vis. Comput. Gr., 3:3 (1997), 228244. [16] T. Lyche and L. Schumaker, Local spline approximation methods, J. Approx. Theory, 15 (1975),294325. [17] E. Quak and L.L. Schumaker, Calculation of the energy of a piecewise polynomial surface, in:M. G. Cox and J. C. Mason (Eds.), Algorithms for Approximation II, Clarendon Press, Oxford,1989, 134143. [18] E. Quak and L.L. Schumaker, Cubic spline fitting using data dependent triangulations, ComputAided Geom. D., 7 (1990), 293301. [19] D. Shepard, A two dimentional interpolation function for irregularly spaced data. in: Proc. ACM23rd Nat'l Conf., 1968, 517524. [20] R. Szeliski, Fast surface interpolation using hierarchial basis functions, IEEE Trans. Pattern Anal.Machine Intell., 12 (1990), 513528. [21] S. Timoshenko and S. WoinowskyKrieger, Theory of Plates and Shells, McgrawHill InternationalBook Company, New York, 1959. [22] R.H. Wang, The structural characterization and interpolation for multivariate splines, Acta MathSin., 18:2 (1975), 91106. (English transl., ibid. 18 (1975), 1039. [23] R.H. Wang, The dimension and basis of spaces of multivariate splines, J. Comput. Appl. Math.,1213 (1985), 163177. [24] R.H. Wang, Multivariate Spline Function and Their Applications, Science Press/Kluwer Acad.Pub., Beijing/New York, 2001. [25] R.H. Wang, C.J. Li and C.G. Zhu, A Course for Computational Geometry, Science Press, Beijing,2008. [26] X.F. Wang, F. Cheng and B.A. Barsky, Energy and Bspline interproximation, ComputerAidedDesign, 29 (1997), 485496. [27] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functionsof minimal degree. Adv. Comput. Math., 4 (1995), 389396. [28] H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and ComputationalMathematics, Cambridge University Press, Cambridge, 2005. [29] Z.M. Wu, Compactly supported positive definite radial functions, Adv. Comput. Math., 4 (1995),283292. 
[1] 
Tianhe Zhou, Danfu Han.
HERMITE SCATTERED DATA FITTING BY THE PENALIZED LEAST SQUARES METHOD [J]. Journal of Computational Mathematics, 2009, 27(6): 802811. 
[2]  Ren Hong WANG, Chong Jun LI. A KIND OF MULTIVARIATE NURBS SURFACES [J]. Journal of Computational Mathematics, 2004, 22(1): 137144. 
[3]  Zhi Bin CHEN,Yu Yu FENG,Kozak Jernej. THE BLOSSOM APPROACH TO THE DIMENSION OF THE BIVARIATE SPLINE SPACE [J]. Journal of Computational Mathematics, 2000, 18(2): 183198. 
[4]  Renhong Wang , You Lu. QUASIINTERPOLATING OPERATORS AND THEIR APPLICATIONS IN HYPERSINGULARINTEGRALS [J]. Journal of Computational Mathematics, 1998, 16(4): 337344. 
Viewed  
Full text 


Abstract 

