数值计算与计算机应用    2009 30 (1): 58-69   ISSN: 1000-3266  CN: 11-2124/TP  

平行六边形区域非均匀节点快速傅立叶变换
李明亮1,2, 李会元1, 孙家昶1
  1. 中国科学院软件研究所并行计算实验室, 北京 100190
  2. 中国科学院研究生院, 北京 100190
收稿日期 null  修回日期 null  网络版发布日期 2009-04-01
参考文献  

<br>[1] Cipra  B A.  The best of the 20th century: editors name top 10   algorithms\nobreakspace[J]. \newblock SIAM News, 2000, 33:\nobreakspace 4.

<br>[2] Sun  J. Multivariate Fourier series over a class of non tensor-product   partition domains\nobreakspace[J].  J. Comput. Math, 2003, 21:  53-62.

<br>[3] Li  H,  Sun  J.  Fast Fourier transform on hexagon\nobreakspace[G]. \newblock In Z Golowin skin R. Tony W. Zhang w  C, editor, Current   Trend in High Performance Computing and Its Application, Lecture Notes in   Computational Science and Engineering, pages 357-362. Springer-verlag,   Berlin, 2005.

<br>[4] 孙家昶, 姚继峰.  平行六边形区域的快速傅立叶变换[J].  计算数学, 2004, 26(3):  351-366.

<br>[5] Li H, Sun  J,  Xu  Y.  Discrete Fourier analysis, cubature and interpolation on a hexagon   and a triangle\nobreakspace[J]. SIAM Numer. Anal., 2008, 46: 1653-1681.

<br>[6] Sun  J,  Li H. Generalized Fourier transform on an arbitrary triangler   domain\nobreakspace[J].  Advanes in computation Mathematics, 2005, 22: 223-248.

<br>[7] Sun J.  Approximate edge-decomposition preconditioners for solving numerical   PDE problems\nobreakspace[J]. Applied mathematics and  computation, 2006, 172:  772-787.

<br>[8] Li H.  Hexagonal spectral methods for two-dimensional incompressible   flows[G].  In in Recent Progress in Scientific Computing. In Zhongci Shi, Wenbin Liu, M. Ng editor, in Recent Progress in Scientific Computing Science Press, Beijing, 2007.

<br>[9] Sun J.  Multivariate Fourier transform methods over simplex and super-simplex   domains[J].  Journal of Computational Mathematics, 2006, 24: 55-66.

<br>[10] H.  E, T.  K,  D.  P. Field inhomogeneity correction based on gridding reconstruction for   magnetic resonance imaging[J].  IEEE Trans. Med. Imag, 2006, 26: 374-384.

<br>[11] T.  K, S.  K,  D.  P. A note on the iterative MRI reconstruction from nonuniform k-space   data[J].  Int. J. Biomed. Imag.  2007, doi: 10.1155/2007/24727.

<br>[12] D. P,  G.  S.  A new linogram algorithm for computerized tomography [J].  IMA J. Numer. Anal., 2001, 21: 769-782.

<br>[13] D. P,  G. S. New Fourier reconstruction algorithms for computerized   tomography[G].  In M.A. Unser A. Aldroubi  A L, editor, Proceedings of SPIE:   Wavelet Applications in Signal and Image Processing VIII, volume 4119, pages   13-23. 2000.

<br>[14] Rockmore  D N.  The  FFT:  An algorithm the whole family can use[J].  Computing in Science and Engineering, 2000, 2(1):   60-64.

<br>[15] Keiner  J, Kunis  S,  Potts  D.  NFFT 3.0 -Tutorial[M], 2007.

<br>[16] G.Steidl.  A note on fast Fourier transforms for nonequispaced   grids[J].  Adv. Comp. Math., 1998, 9: 337-352.

<br>[17] Potts  D, Steidl{\nobreak} G,  Tasche  M.  Fast Fourier transforms for nonequispaced data: A tutorial[M].

<br>[18] http://www.tu-chemnitz.de/~potts/nfft [M].

<br>[19] M.  F,  J.  M. Combined complex ridgelet shrinkage and total variation   minimization[J].  SIAM J. Sci. Comput., 2006, 28: 984-1000.

 

<br>[20] D.  K S P,  G.  S. Fast Gauss transforms with complex parameters using   NFFTs [J].  J. Numer. Math., 2006, 14: 295-303.

<br>[21] S.  F M K,  D.  P.  On the computation of the polar FFT [J].  Appl. Comput. Harm. Anal., 2007, 22: 257-263.

 


通讯作者: