数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 | 
数值计算与计算机应用  2020, Vol. 41 Issue (2): 151-158    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
空穴、H+在SiO2体内输运的数值模拟研究
李培1, 贺朝会1, 郭红霞2, 李永宏1, 张晋新3
1 西安交通大学, 西安 710049;
2 西北核技术研究所, 西安 710024;
3 西安电子科技大学, 西安 710071
NUMERICAL SIMULATION OF HOLE AND H+ TRANSPORTATION AT Si/SiO2 INTERFACE
Li Pei1, He Chaohui1, Guo Hongxia2, Li Yonghong1, Zhang Jinxin3
1 Xi'an Jiaotong University, Xi'an 710049, China;
2 Northwest Institution of Nuclear Technology, Xi'an 710024, China;
3 Xidian University, Xi'an 710126, China
 全文: PDF (1053 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 半导体器件的电离辐射效应涉及到材料内部的一系列物理过程,包括空穴对的产生与复合、载流子的输运以及氧化物陷阱电荷和界面态电荷的形成与累积.空穴和H+的输运机制是理解电离辐射效应的关键环节,其中空穴的输运影响着氧化物陷阱正电荷的形成、退火以及H+的释放,从而影响界面态电荷的形成.本文建立Si/SiO2界面的物理模型,借助TCAD数值模拟方法,分析不同剂量率辐照条件下空穴和H+在SiO2体内的输运机制和浓度分布.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词电离辐射效应   空穴输运机制   H+输运机制   TCAD数值模拟     
Abstract: The ionizing-radiation effect of semiconductor devices involves a series of physical processes inside the material:including the generation and recombination of holes, carrier transport, the formation and accumulation of oxide trap charges and interface charges. The key to understand ionizing-radiation effect is the transport mechanism of H+ and holes, which the hole transport affects the formation of oxide trap charge, annealing, and the release of H+, thus affecting the formation of interface states charge. In this paper, a physical model of the Si/SiO2 interface was established; TCAD numerical simulation is used to analyze the transport mechanism and concentration distribution of holes and H+ inside the oxide layer irradiated by different dose rate.
Key wordsionizing-radiation effect   holes trapping   protons transportation   TCAD numerical simulation   
收稿日期: 2020-03-27;
引用本文:   
. 空穴、H+在SiO2体内输运的数值模拟研究[J]. 数值计算与计算机应用, 2020, 41(2): 151-158.
. NUMERICAL SIMULATION OF HOLE AND H+ TRANSPORTATION AT Si/SiO2 INTERFACE[J]. Journal on Numerical Methods and Computer Applicat, 2020, 41(2): 151-158.
 
[1] Ausman Jr G A, McLean F B. Electron-hole pair creation energy in SiO2[J]. Applied Physics Letters, 1975, 26(4):173-175.
[2] Brown D B, Dozier C M. Electron-hole recombination in irradiated SiO2 from a microdosimetry viewpoint[J]. IEEE Transactions on Nuclear Science, 1981, 28(6):4142-4144.
[3] Rowsey N L, Law M E, Schrimpf R D, et al. A Quantitative Model for ELDRS and H2 Degradation Effects in Irradiated Oxides Based on First Principles Calculations[J]. IEEE Transactions on Nuclear Science, 2011, 58(6):2937-2944.
[4] Fleetwood D M, Winokur P S, Reber Jr R A, et al. Effects of oxide traps, interface traps, and "border traps"on metal-oxide-semiconductor devices[J]. Journal of Applied Physics, 1993, 73(10):5058-5074.
[5] Li P, He C, Guo H, et al. An Investigation of ELDRS in Different SiGe Processes[J]. IEEE Transactions on Nuclear Science, 2017, 64(5):1137-1141.
[6] Griscom D L, Friebele E J. Fundamental radiation-induced defect centers in synthetic fused silicas:Atomic chlorine, delocalized E'centers, and a triplet state[J]. Physical Review B, 1986, 34(11):7524.
[7] Pantelides S T, Lu Z Y, Nicklaw C, et al. The E'center and oxygen vacancies in SiO2[J]. Journal of Non-Crystalline Solids, 2008, 354(2-9):217-223.
[8] Hughes R C. Hole mobility and transport in thin SiO2 films[J]. Applied Physics Letters, 1975, 26(8):436-438.
[9] McLean F B, Ausman Jr G A, Boesch Jr H E, et al. Application of stochastic hopping transport to hole conduction in amorphous SiO2[J]. Journal of Applied Physics, 1976, 47(4):1529-1532.
[10] Hughart D R. Variations in radiation response due to hydrogen:Mechanisms of interface trap buildup and annealing[M]. Vanderbilt University, 2012.
[11] Chen X J, Barnaby H J, Vermeire B, et al. Mechanisms of enhanced radiation-induced degradation due to excess molecular hydrogen in bipolar oxides[J]. IEEE Transactions on Nuclear Science, 2007, 54(6):1913-1919.
[12] Lopez N, Illas F, Pacchioni G. Mechanisms of Proton Formation from Interaction of H2 with E' and Oxygen Vacancy Centers in SiO2:Cluster Model Calculations[J]. The Journal of Physical Chemistry B, 2000, 104(23):5471-5477.
[13] Rashkeev S N, Fleetwood D M, Schrimpf R D, et al. Defect generation by hydrogen at the Si-SiO2 interface[J]. Physical review letters, 2001, 87(16):165506.
没有找到本文相关文献
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10