首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 | 
数值计算与计算机应用  2020, Vol. 41 Issue (2): 121-142    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
黄成梓1, 白石阳1, 王芹1, 马召灿1, 张倩茹1, 刘田田1, 桂升1, 卢本卓1, 陈旻昕2, 李鸿亮3
1 LSEC, 中国科学院数学与系统科学研究院计算数学研究所, 国家数学与交叉科学中心, 北京 100190;
2 苏州大学数学科学学院, 苏州 215006;
3 四川师范大学数学科学学院, 成都 610066
Huang Chengzi1, Bai Shiyang1, Wang Qin1, Ma Zhaocan1, Zhang Qianru1, Liu Tiantian1, Gui Sheng1, Lu Benzhuo1, Chen Minxin2, Li Hongliang3
1 LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 Department of Mathematics, Soochow University, Suzhou 215006, China;
3 Department of Mathematics, Sichuan Normal University, Chengdu 610066, China
 全文: PDF (1720 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文介绍我们开发的一款适用于半导体器件及其辐照损伤效应定量模拟的三维并行仿真应用软件平台3Ddevice.该软件由中国科学院数学与系统科学研究院和中国工程物理研究院微系统与太赫兹研究中心联合开发,能直接解算半导体器件的电学响应性质及其氧化物层在电离辐照下带电缺陷与界面态缺陷累积动力学过程,计算器件损伤后的电学响应偏移.我们已经实现器件电离辐照总剂量效应以及低剂量率增强效应定量模拟,模拟结果与实验数据吻合良好.软件采用C/S架构,分为本地客户端与远程计算端两大子系统.客户端由总控模块、前处理模块、通信模块以及后处理模块组成.总控模块主要的功能是求解器挂载、数值模拟流程搭建与管理.前处理模块主要功能是器件几何建模以及网格生成与优化.通信模块主要功能是求解器参数初始化与硬件系统状态监控.后处理模块主要功能是数值模拟结果可视化与数据分析.计算端基于三维并行自适应有限元平台[1](PHG)开发,目前包括半导体器件模拟器(DevSim),电离辐照损伤模拟器(TIDSim).上述求解器采用MPI通讯技术,支持大规模分布式并行,已实现十亿量级网格单元数的器件电离损伤及电学响应模拟.本文介绍的仿真软件系统是一个初级版本,将会得到持续开发更新,它的详细使用方法请参照并以软件使用说明书为准.
E-mail Alert
关键词器件模拟   辐照损伤效应   网格生成   可视化系统   有限元     
Abstract: This work introduces a parallel software platform we developed, 3Ddevice, which is suitable for quantitative simulation of three-dimensional semiconductor devices and their radiation effects. This software is jointly developed by the Academy of Mathematics and Systems Science of the Chinese Academy of Sciences and the Microsystem and Terahertz Research Center of the China Academy of Engineering Physics. It can directly calculate the device's electrical response property and the accumulation processes of charged oxide traps and interface traps of semiconductor devices, as well as the shift of electrical response after irradiation damage. We have simulated the total dose effect of device ionizing radiation and the enhancement effect of low dose rate, and the simulation results are quantitatively in good agreement with the experimental data. The software adopts C/S architecture and is divided into two major subsystems:local client and remote computing end. The client part is composed of pre-processing, post-processor, control module and communication module. The main functions of the control module are the mounting of the solver and the construction and management of the numerical simulation process. The pre-processing module is primarily used for geometric modelling and mesh generation. The communication module can be used to initialize the parameters of solvers and monitor the hardware system status. The postprocessing module is used for analysis and visualization of the simulation results from the solver. The solver module includes two solvers (DevSim for general semiconductor device simulation based on the DD model and TIDSim for simulation of radiation effect). The solvers are developed based on the three-dimensional parallel adaptive finite element platform PHG[1]. Those solvers use MPI communication to support massive distributed parallelism and now can simulate ionization damage effect and electrical response of a device with a billion-scale mesh. The software system is going to be developed and improved continuously, the detailed and updated usage please refer to its manual.
Key wordssemiconductor device simulation   radiation effects   mesh generation   visualization system   finite element   
收稿日期: 2020-03-30;


通讯作者: 李鸿亮,Email:lihongliang@mtrc.ac.cn;卢本卓,Email:bzlu@lsec.cc.ac.cn.     E-mail: lihongliang@mtrc.ac.cn;bzlu@lsec.cc.ac.cn
. 3Ddevice:半导体器件及其辐照损伤效应仿真软件系统[J]. 数值计算与计算机应用, 2020, 41(2): 121-142.
. 3DDEVICE: A SIMULATION SOFTWARE SYSTEM FOR SEMICONDUCTOR DEVICES AND RADIATION EFFECTS[J]. Journal on Numerical Methods and Computer Applicat, 2020, 41(2): 121-142.
[1] Zhang L. A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection[J]. Numerical Mathematics-Theory Methods and Applications, Feb 2009, 2(1):65-89.
[2] Buturla E, Cottrell P, Grossman B, Salsburg K, Lawlor M, McMullen C. Three-dimensional finite element simulation of semiconductor devices[C]. In 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, volume 23, pages 76-77. IEEE, 1980.
[3] Shigyo N, Dang R. Analysis of an anomalous subthreshold current in a fully recessed oxide MOSFET using a three-dimensional device simulator[J]. IEEE Transactions on Electron Devices, 1985,32(2):441-445.
[4] Toyabe T, Masuda H, Aoki Y, Shukuri H, Hagiwara T. Three-dimensional device simulator Caddeth with highly convergent matrix solution algorithms[J]. IEEE Transactions on Electron Devices, 1985, 32(10):2038-2044.
[5] Thurner M, Selberherr S. The extension of MINIMOS to a three dimensional simulation program[C]. In
[6] NASECODE V:Proceedings of the Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pages 327-332. IEEE, 1987.
[7] Chern J, Maeda J T, Arledge L A, Yang P. SIERRA:a 3-D device simulator for reliability modeling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1989, 8(5):516-527.
[8] http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/SentaurusDevice.aspx. Accessed March 10, 2020.
[9] http://www.silvaco.com/products/DeviceSimulation/atlas.html. Accessed March 10, 2020.
[10] Wu K C, Chin G R, Dutton R W. A STRIDE towards practical 3-D device simulation-numerical and visualization considerations[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1991, 10(9):1132-1140.
[11] http://cn.comsol.com/products. Accessed March 10, 2020.
[12] Rowsey N L. Quantitative modeling of total ionizing dose reliability effects in device silicon dioxide layers[M]. University of Florida, 2012.
[13] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T. A Quantitative Model for ELDRS and H2 Degradation Effects in Irradiated Oxides Based on First Principles Calculations[J]. IEEE Transactions on Nuclear Science, 2011, 58(6):2937-2944.
[14] https://www.qt.io/. Accessed March 10, 2020.
[15] http://www.lag.net/paramiko/. Accessed March 10, 2020.
[16] Schroeder W J, Lorensen B, Martin K. The visualization toolkit:an object-oriented approach to 3D graphics[M]. Kitware, 2004.
[17] Hunter J D. Matplotlib:A 2D Graphics Environment[J]. Computing in Science and Engineering, 2007, 9(3):90-95.
[18] Si H. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator[J]. ACM Transactions on Mathematical Software, 2015, 41(2):11.1-11.36.
[19] Chew L P. Guaranteed-quality triangular meshes[R]. Technical report, Cornell University, 1989.
[20] Liu T, Chen M, Lu B. Efficient and Qualified Mesh Generation for Gaussian Molecular Surface Using Adaptive Partition and Piecewise Polynomial Approximation[J]. SIAM Journal on Scientific Computing, 2018, 40(2):B507-B527.
[21] Liu T, Chen M, Song Y, Li H, Lu B. Quality improvement of surface triangular mesh using a modified Laplacian smoothing approach avoiding intersection[J]. PLOS ONE, 2017, 12(9):e0184206.
[22] 王芹, 马召灿, 白石阳, 张林波, 李鸿亮, 卢本卓. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2):85-104. 浏览
[23] 许竞劼, 谢妍, 卢本卓. 一个基于PHG平台的并行有限元生物分子模拟解法器[J]. 数值计算与计算机应用,2016, 37(1):67-82. 浏览
[24] 马召灿, 许竞劼, 李鸿亮, 卢本卓. 半导体器件辐照损伤效应模拟的数值算法及应用[J]. 数值计算与计算机应用, 2020, 41(2):105-120. 浏览
[25] http://lsec.cc.ac.cn/phg/download/manual.pdf. Accessed March 10, 2020.
[1] 刘阳, 李金, 胡齐芽, 贾祖朋, 余德浩. 边界元方法的一些研究进展[J]. 数值计算与计算机应用, 2020, 42(3): 310-348.
[2] 谢和虎. 子空间扩展算法及其应用[J]. 数值计算与计算机应用, 2020, 41(3): 169-191.
[3] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 数值计算与计算机应用, 2020, 42(3): 298-309.
[4] 戴小英. 电子结构计算的数值方法与理论[J]. 数值计算与计算机应用, 2020, 42(2): 131-158.
[5] 王芹, 马召灿, 白石阳, 张林波, 卢本卓, 李鸿亮. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2): 85-104.
[6] 马召灿, 许竞劼, 卢本卓, 李鸿亮. 半导体器件电离辐照损伤效应模拟的数值算法及应用[J]. 数值计算与计算机应用, 2020, 41(2): 105-120.
[7] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 数值计算与计算机应用, 2020, 42(2): 196-206.
[8] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 数值计算与计算机应用, 2020, 42(1): 101-116.
[9] 葛志昊, 李婷婷, 王慧芳. 双资产欧式期权定价问题的特征有限元方法[J]. 数值计算与计算机应用, 2020, 41(1): 27-41.
[10] 张然. 弱有限元方法在线弹性问题中的应用[J]. 数值计算与计算机应用, 2020, 42(1): 1-17.
[11] 李瑜, 谢和虎. 基于特征线法的群体平衡系统的数值模拟[J]. 数值计算与计算机应用, 2019, 40(4): 261-278.
[12] 李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 数值计算与计算机应用, 2019, 41(3): 259-265.
[13] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 数值计算与计算机应用, 2019, 41(2): 191-211.
[14] 谢和虎, 谢满庭, 张宁. 一种求解半线性问题的快速多重网格法[J]. 数值计算与计算机应用, 2019, 40(2): 143-160.
[15] 葛志昊, 葛媛媛. 几乎不可压线弹性问题的新的Uzawa型自适应有限元方法[J]. 数值计算与计算机应用, 2018, 40(3): 287-298.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn