数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 | 
数值计算与计算机应用  2020, Vol. 41 Issue (2): 85-104    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维半导体器件漂移扩散模型的并行有限元方法研究
王芹1,2, 马召灿1,2, 白石阳1,2, 张林波1,2, 卢本卓1,2, 李鸿亮3
1 LSEC, 国家数学与交叉科学中心, 中国科学院数学与系统科学研究院, 计算数学与科学工程计算研究所, 北京 100190;
2 中国科学院大学数学科学学院, 北京 100049;
3 四川师范大学数学科学学院, 成都 610066
RESEARCH ON PARALLEL FINITE ELEMENT METHODS FOR THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR DEVICE SIMULATIONS
Wang Qin1,2, Ma Zhaocan1,2, Bai Shiyang1,2, Zhang Linbo1,2, Lu Benzhuo1,2, Li Hongliang3
1 LSEC, NCMIS, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Mathematics, Sichuan Normal University, Chengdu 610066, China
 全文: PDF (1134 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文设计了一种新的三维自适应迎风稳定化有限元方法(SUPG-IP),并对比研究了几种半导体器件模拟的并行有限元方法.数值模拟结果表明:稳定化有限元方法适用于大偏压以及高掺杂器件模拟;而经典的Zlamal有限元方法更适用于计算半导体器件的电学响应曲线.我们基于三维并行自适应有限元平台PHG开发了半导体器件漂移扩散模型求解器DevSim,并对几种典型的半导体器件进行了模拟测试.计算结果与商业软件Sentaurus吻合较好,验证了算法的有效性.我们对PN结进行了超大规模网格并行模拟测试,网格达8亿单元并使用2048进程计算,展示了算法良好的并行可扩展性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词半导体器件   漂移扩散模型   有限元方法   并行数值模拟   DevSim     
Abstract: In this paper, we propose a novel 3D adaptive upwind stabilized finite element method (SUPG-IP), and perform a study to compare several parallel finite element methods for semiconductor device simulations. Numerical results show that the stabilized finite element methods are applicable to problems with large biases and high doping concentrations, while the classic Zlamal finite element method is more suitable for calculation of electrical characteristics of devices. Based on the three-dimensional parallel adaptive finite element toolbox PHG, a Drift-Diffusion model solver, DevSim, for semiconductor device simulations is developed. It is applied to simulating several typical semiconductor devices. The results are consistent with those of the commercial software Sentaurus, which verifies the effectiveness of the algorithms. A large-scale numerical experiment of PN diode, with 800 million elements and 2048 MPI processes, was carried out, demonstrating good parallel scalability of the algorithms.
Key wordssemiconductor device   drift-diffusion model   finite element methods   parallel simulation   DevSim   
收稿日期: 2020-04-02;
基金资助:

科学挑战专题(TZ2016003),国家重点研发计划(2016YFB0201304),NSFC(11771435).

通讯作者: 李鸿亮,lihongliang@mtrc.ac.cn     E-mail: lihongliang@mtrc.ac.cn
引用本文:   
. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2): 85-104.
. RESEARCH ON PARALLEL FINITE ELEMENT METHODS FOR THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR DEVICE SIMULATIONS[J]. Journal on Numerical Methods and Computer Applicat, 2020, 41(2): 85-104.
 
[1] https://www.synopsys.com/silicon/tcad/device-simulation/sentaurus-device.html. Accessed March 7, 2020.
[2] https://www.silvaco.com/products/tcad/device simulation/atlas/atlas.html. Accessed March 7, 2020.
[3] Vanroosbroeck W. Theory of the flow of electrons and holes in germanium and other semiconductors[J]. Bell System Technical Journal, 1950, 29(4):560-607.
[4] 马召灿, 许竞劼, 卢本卓, 李鸿亮. 半导体器件辐照损伤效应模拟的数值算法及应用[J]. 数值计算与计算机应用, 2020, 41(2):105-120.
[5] Gummel H. Self-consistent iterative scheme for one-dimensional steady state transistor calculations[J]. IEEE Transactions on Electron Devices, 1964, 11(10):455-465.
[6] 成杰, 张林波. 一种可扩展的三维半导体器件并行数值模拟算法[J]. 计算物理,2012, 29(3):439-448.
[7] Scharfetter D, Gummel H. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Transactions on Electron Devices, 1969, 16(1):64-77.
[8] 竞劼, 谢妍, 卢本卓. 一个基于PHG平台的并行有限元生物分子模拟解法器[J]. 数值计算与计算机应用,2016, 37(1):67-82. 浏览
[9] Chen M, Lu B. TMSmesh:A robust method for molecular surface mesh generation using a trace technique[J]. Journal of Chemical Theory and Computation, 2010, 7(1):203-212.
[10] Liu T, Bai S, Tu B, Chen M, Lu B. Membrane-channel protein System mesh construction for finite element simulations[J]. Molecular Based Mathematical Biology, 2015, 3(1):128-139.
[11] Liu T, Chen M, Lu B. Efficient and qualified mesh generation for Gaussian molecular surface using adaptive partition and piecewise polynomial approximation[J]. SIAM Journal on Scientific Computing, 2018, 40(2):B507-B527.
[12] Gui S, Khan D, Wang Q, Yan D, Lu B. Frontiers in biomolecular mesh generation and molecular visualization systems[J]. Visual Computing for Industry, Biomedicine, and Art, 2018, 1:7.
[13] Bank R, Burgler J, Fichtner W, Smith R. Some upwinding techniques for finite-element approximations of convection-diffusion equations[J]. Numerische Mathematik, 1990, 58(2):185-202.
[14] Miller J, Schilders W, Wang S. Application of finite element methods to the simulation of semiconductor devices[J]. Reports on Progress in Physics, 1999, 62(3):277-353.
[15] Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3):199-259.
[16] Douglas J, Dupont T. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods[M], pages 207-216. Springer Berlin Heidelberg, Berlin, Heidelberg, 1976.
[17] Zlamal M. Finite element solution of the fundamental equations of semiconductor devices. I[J]. Mathematics of Computation, 1986, 46(173):27-43.
[18] Zhang L. A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection[J]. Numerical Mathematics-Theory Methods and Applications, Feb 2009, 2(1):65-89.
[19] 黄成梓, 白石阳, 王芹, 马召灿, 张倩茹, 刘田田, 桂升, 卢本卓, 陈旻昕, 李鸿亮. 3Ddevice:半导体器件及其辐照损伤效应仿真软件系统[J]. 数值计算与计算机应用,2020, 41(2):121-142.
[20] Burman E, Hansbo P. Edge stabilization for Galerkin approximations of convection-diffusionreaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(15-16):1437-1453.
[21] Duan H, Wei Y. A New Edge Stabilization Method for the Convection-Dominated DiffusionConvection Equations[M], pages 48-60. Springer International Publishing, Cham, 2018.
[22] 成杰. 基于PHG平台的半导体器件模拟研究与结构力学有限元软件研制[D]. PhD thesis, 中国科学院研究生院,2012.
[1] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 数值计算与计算机应用, 2020, 42(3): 298-309.
[2] 谢和虎. 子空间扩展算法及其应用[J]. 数值计算与计算机应用, 2020, 41(3): 169-191.
[3] 戴小英. 电子结构计算的数值方法与理论[J]. 数值计算与计算机应用, 2020, 42(2): 131-158.
[4] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 数值计算与计算机应用, 2020, 42(1): 101-116.
[5] 张然. 弱有限元方法在线弹性问题中的应用[J]. 数值计算与计算机应用, 2020, 42(1): 1-17.
[6] 葛志昊, 李婷婷, 王慧芳. 双资产欧式期权定价问题的特征有限元方法[J]. 数值计算与计算机应用, 2020, 41(1): 27-41.
[7] 李瑜, 谢和虎. 基于特征线法的群体平衡系统的数值模拟[J]. 数值计算与计算机应用, 2019, 40(4): 261-278.
[8] 李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 数值计算与计算机应用, 2019, 41(3): 259-265.
[9] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 数值计算与计算机应用, 2019, 41(2): 191-211.
[10] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 数值计算与计算机应用, 2018, 40(2): 191-213.
[11] 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110.
[12] 余涛, 张镭. 线性弹性问题的局部正交分解方法[J]. 数值计算与计算机应用, 2018, 39(1): 10-19.
[13] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 数值计算与计算机应用, 2018, 40(1): 107-116.
[14] 杨建宏. 定常Navier-Stokes问题低次等阶稳定有限体积元算法研究[J]. 数值计算与计算机应用, 2017, 38(2): 91-104.
[15] 周宇, 李秋齐. 基于降基多尺度有限元的PGD方法及其在含参数椭圆方程中的应用[J]. 数值计算与计算机应用, 2017, 38(2): 105-122.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10