数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 | 
数值计算与计算机应用  2019, Vol. 40 Issue (3): 230-242    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
波形松弛方法的绝对稳定与压缩
范振成
闽江学院数学与数据科学学院, 福州 350108
ABSOLUTE STABILITY AND CONTRACTION OF WAVEFORM RELAXATION METHODS
Fan Zhencheng
College of mathematic and data science, Minjiang university, Fuzhou 350108, China
 全文: PDF (425 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 波形松弛(WR)方法是求常微分方程近似解的数值方法,对它的研究多集中于收敛性,极少见到稳定性研究报告,而不稳定的数值方法是没有意义的.借鉴常微分方程数值方法绝对稳定的思想,提出了WR方法的绝对稳定定义.分析连续基本WR方法和基于Θ方法的离散基本WR方法的稳定性,给出了连续和离散WR方法的绝对稳定条件,以及离散WR方法的压缩条件.对于WR方法,分裂函数和数值方法(用于离散连续WR方法)的选择是两个基础问题.论文结论部分地揭示了WR方法的稳定性与分裂函数和数值方法的关系.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词波形松弛方法   绝对稳定   压缩   分裂函数   数值方法     
Abstract: The waveform relaxation method is the numerical method of solving approximately the ordinary differential equation. Most of research works on WR mehtods focus on convergence, few of them concern the stability although an unstable numerical method is unmeaning. The definition of absolute stability of WR methods is presented by generalizing absolute stability of numerical methods of ordinary differential equations. The analysis for stability of continuous basic WR methods and discrete basic WR methods based on Θ-methods leads to the absolutely stable conditions of the continuous and discrete WR methods, and the contracting condition of discrete WR methods. The choice of splitting functions and numerical methods (used to discrete continuous WR methods) is two basic problems of WR methods. The results of this paper shows partly the relationship between the stability of WR methods and the splitting functions and numerical methods used.
Key wordsWaveform relaxation methods   Absolute stability   Contraction   Splitting functions   Numerical methods   
收稿日期: 2019-01-23; 出版日期: 2019-09-12
引用本文:   
. 波形松弛方法的绝对稳定与压缩[J]. 数值计算与计算机应用, 2019, 40(3): 230-242.
. ABSOLUTE STABILITY AND CONTRACTION OF WAVEFORM RELAXATION METHODS[J]. Journal on Numerical Methods and Computer Applicat, 2019, 40(3): 230-242.
 
[1] Gristede G D, Zukowski C A. Convergence properties of waveform relaxation circuit simulation methods[J]. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1998, 45(7):726-738.
[2] Jalnapurka A D. Circuit simulation using distributed waveform relaxation techniques[D]. Saskatoon, Saskatchewan:Canada Spring, 1998.
[3] Lelarasmee E, Ruehli A E, Sangiovanni-Vincentelli A L. The waveform relaxation method for time-domain analysis of large scale integrated circuits[J]. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., 1982, 1(3):131-145.
[4] Tsuji T, Frédéric Magoulès, Uchida K, Oyama T. A partitioning technique for a waveform relaxation method using eigenvectors in the transient stability analysis of power systems[J]. IEEE Trans. Power Syst., 2015, 30(6):2867-2879.
[5] White J, Odeh F, Vincentelli A S, Ruehli A. Waveform relaxation:theory and practice[J]. Trans. Soc. Comput. Simul., 1985, 2(2):1-49.
[6] Antoine X, Lorin E. An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations[J]. Numer. Math., 2017, 137:923-958.
[7] Bartoszewski Z, Kwapisz M. On the Convergence of Waveform Relaxation Methods for Differential-Functional Systems of Equations[J]. J. Math. Anal. Appl., 1999, 235:478-496.
[8] Bartoszewski Z, Kwapisz M. On error estimates for waveform relaxation methods for delaydifferential equations[J]. SIAM J. Numer. Anal., 2000, 38(2):639-659.
[9] Bartoszewski Z, Kwapisz M. Delay dependent estimates for waveform relaxation methods for neutral differential-functional systems[J]. Comput. Math. Appl., 2004, 48:1877-1892.
[10] Califano G, Conte D. Optimal Schwarz waveform relaxation for fractional diffusion-wave equations[J]. Appl. Numer. Math., 2018, 127:125-141.
[11] Jackiewicz Z, Kwapisz M. Convergence of waveform relaxation methods for differential-algebraic systems[J]. SIAM J. Numer. Anal., 1996, 33(6):2303-2317.
[12] Jiang Y L, Wing O. Monotone waveform relaxation for systems of nonlinear differential-algebraic equations[J]. SIAM J. Numer. Anal., 2000, 38(1):170-185.
[13] Liu H L, Fu Y Y, Li B L. Discrete waveform relaxation method for linear fractional delay differential-algebraic equations[J]. Discrete Dyn. Nat. Soc., 2017, 2017(24):1-9.
[14] Ong B W, Mandal B C. Pipeline implementations of Neumann-Neumann and Dirichlet-Neumann waveform relaxation methods[J]. Numer. Algor., 2018(78):1-20.
[15] Zubik-Kowal B, Vandewalle S. Waveform relaxation for functional-differential equations[J]. SIAM J. Sci. Comput., 1999, 21(1):207-226.
[16] Bahi J, Griepentrog E, Miellouparallel J C. Treatment of a class of differential-algebraic systems[J]. SIAM J. Numer. Anal., 1996, 33(5):1969-1980.
[17] Bellen A, Jackiewicz Z, Zennaro M. Contractivity of waveform relaxation Runge-Kutta iterations and related limit methods for dissipative systems in the maximum norm[J]. SIAM J. Numer. Anal., 1994, 31(2):499-523.
[18] Burrage K, Jackiewicz Z, Nofsett S P, Renaut R A. Preconditioning waveform relaxation iterations for differential systems[J]. BIT, 1996, 36(1):54-76.
[19] Garrappa R. An analysis of convergence for two-stage waveform relaxation methods[J]. J. Comput. Appl. Math., 2004, 169:377-392.
[20] Jeltsch R, Pohl B. Waveform relaxation with overlapping splittings[J]. SIAM J. Sci. Comput., 1995, 16(1):40-49.
[21] Leimkuhler B. Timestep acceleration of waveform relaxation[J]. SIAM J. Numer. Anal., 1998, 35(1):31-50.
[22] Nakhla N M, Ruehli A E, Nakhla M S, Achar R. Simulation of coupled interconnects using waveform relaxation and transverse partitioning[J]. IEEE Trans. Adv. Packag., 2006, 29(1):78-87.
[23] Ta asan S, Zhang H. On the multigrid waveform relaxation method[J]. SIAM J. Sci. Comput., 1995, 16(5):1092-1104.
[24] Jansen J K M, Mattheij R M M, Penders M T M, Schilders W H A. Stability and efficiency of waveform relaxation methods[J]. Comput. Math. Appl., 1994, 28(1-3):153-166.
[25] Dekker K, Verwer J G. Stability of Runge-Kutta methods for stiff nonlinear differential equations[M]. Amsterdam-New York:North-Holland 1984.
[26] Lambert J D. Numerical Methods for Ordinary Differential Systems:The Initial Value Problem[M]. New York:Wiley, 1992.
[27] Hom R A, Johnson C R(著), 张晓明, 张凡(译). 矩阵分析[M]. 北京:机械工业出版社, 2014.
[28] Miekkala U, Nevanlinna O. Convergence of dynamic iteration methods for initial value problems[J]. SIAM J. Sci. Stat. Comput., 1987, 8(4):459-482.
[1] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2018, 39(3): 161-171.
[2] 纪国良, 丁勇, 周曼, 冯仰德. 工程计算中大型稀疏矩阵存储方法研究[J]. 数值计算与计算机应用, 2018, 39(3): 217-230.
[3] 施章磊, 李维国. 矩阵广义逆硬阈值追踪算法与稀疏恢复问题[J]. 数值计算与计算机应用, 2017, 39(2): 189-199.
[4] 许亮, 冯成亮, 刘铁钢. 虚拟流体方法在动边界问题中的应用[J]. 数值计算与计算机应用, 2016, 37(2): 116-124.
[5] 林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 数值计算与计算机应用, 2016, 38(1): 1-24.
[6] 杭旭登. Du Fort-Frankel格式及DFF-I并行格式的稳定性[J]. 数值计算与计算机应用, 2015, 37(3): 273-285.
[7] 李亚玲, 胡宝安, 李梅英. 基于截断加权基追踪模型的迭代支撑探测算法[J]. 数值计算与计算机应用, 2015, 37(1): 42-56.
[8] 王自强, 曹俊英. 时间分数阶扩散方程的一个新的高阶数值格式[J]. 数值计算与计算机应用, 2014, 35(4): 277-288.
[9] 吴洋, 赵永华, 纪国良. 一类大规模稀疏矩阵特征问题求解的并行算法[J]. 数值计算与计算机应用, 2013, 34(2): 136-146.
[10] 纪国良, 冯仰德. 大规模有限元刚度矩阵存储及其并行求解算法[J]. 数值计算与计算机应用, 2012, 33(3): 230-240.
[11] 高建芳, 张艳英, 唐黎明. 种群动力系统的数值解的振动性分析[J]. 数值计算与计算机应用, 2011, 33(4): 357-366.
[12] 周天孝. 弹塑性力学的典则变分原理——特此纪念冯康先生九十周年诞辰[J]. 数值计算与计算机应用, 2011, 32(1): 1-7.
[13] 张慧, 成礼智. A-线性Bregman 迭代算法[J]. 数值计算与计算机应用, 2010, 32(1): 97-104.
[14] 王东红, 赵宁, 王永健. 一维多介质可压缩流动的守恒型界面追踪方法[J]. 数值计算与计算机应用, 2009, 31(2): 118-126.
[15] 王国秋, 全宏跃. 最优多进Haar小波及在图像压缩中的应用[J]. 数值计算与计算机应用, 2009, 31(1): 99-110.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10