首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 |
 数值计算与计算机应用  2018, Vol. 39 Issue (2): 111-134    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles

1. 云南财经大学统计与数学学院, 昆明 650221;
2. 云南大学数学与统计学院, 昆明 650091
A TIME-SPLITTING-FOURIER SPECTRAL METHOD FOR VLASOV-POISSON SYSTEM
Zhang Zhihong1, Liang Yan2, Wang Hanquan1
1. School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China;
2. School of Mathematics and Statistics, Yunnan University, Kunming 650091, China
 全文: PDF (554 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

Abstract： Vlasov-Poisson system is a kind of important mechanical model of astrophysics and plasma physics. This paper will propose a highly efficient numerical calculation method for Vlasov-Poisson system, which is the time-splitting-Fourier spectral method. We use timesplitting scheme in time direction and Fourier spectral method in the space variable direction and speed variable direction to discretize the equations. We firstly analyze and prove the four conservation laws of the one and two dimension of Vlasov-Poisson equations. Secondly, we give the detailed algorithm on how to solve one and two dimensional of Vlasov-Poisson system respectively. Finally, we show the numerical accuracy and reliability of the proposed method from the numerical results.

 引用本文: . 求解Vlasov-Poisson方程组的一种时间分裂傅里叶谱方法[J]. 数值计算与计算机应用, 2018, 39(2): 111-134. . A TIME-SPLITTING-FOURIER SPECTRAL METHOD FOR VLASOV-POISSON SYSTEM[J]. Journal of Numerical Methods and Computer Applicat, 2018, 39(2): 111-134.

 [1] Shen J, Tang T, Wang L L. Spectral method[M]. Springer Series in Computational Mathematics, 2011, 23-43. [2] Liu Q H. Fast Fourier Transforms and Nufft[M]. John Wiley and Sons, Inc., 2005, 2-24. [3] Armstrong T P, Harding R C, Knorr G, Montgomery D. Solution of Vlasov's equation by transform methods[J]. Methods in Computational Physics, 1970, (9):29-86. [4] Huot F, Ghizzo A, Bertrand P, Sonnendr, Cker E. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system[J]. Joural of Computational Physics, 2003, 185(2):512-531. [5] Cheng C Z. The integration of the Vlasov equation for a magnetized plasma[J]. Journal of Computational PhysicsJ, 1977, 24(4):348-360. [6] Cheng C Z, Knorr G. The integration of the Vlasov equation in configuration space[J]. Journal of Computational Physics, 1975, 22(3):330-351. [7] Eliasson B. Outflow Boundary Conditions for the Fourier Transformed One-Dimensional VlasovPoisson System[J]. Plenum Press, 2001, 225(2):1508-1532. [8] Denavit J, Kruer W L. Comparison of numerical solutions of the Vlasov equation with particle simulations of collisionless plasmas[J]. Phys.Fluids, 1971, 14(8):1782-1791. [9] Eliasson B. Outflow boundary conditions for the Fourier transformed three-dimensional VlasovMaxwell system[J]. Journal of Scientific Computing, 2001, 225(1):1508-1532. [10] Feng J, Hitchon W N G. Self-consistent kinetic simulation of plasmas[J]. Phys.Reb.E, 2000, 61(3):3160-3173. [11] Filbet F, Sonnedrucker E, Bertrand P. Conservative numerical schemes for the Vlasov equation[J]. Journal of Computational Physics, 2001, 172(1):166-187. [12] Manzini G, Delzanno G L, Vencels J, Markidis S. A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system[J]. Journal of Computational Physics, 2016, 317:82-107. [13] Ayuso B, Carrillo J A, Shu C W. Discontinuous Galerkin methods for the one-dimensional VlasovPoisson system[J]. Kinetic and Related Models, 2013, 4(4):955-989. [14] Eliasson B. The parallel implementation of the one-dimensional Fourier transformed VlasovPoisson system[J]. Computer Physics Communications, 2005, 170(2):205-230. [15] Gagné R R J, Shoucri M M. A splitting scheme for the numerical solution of a one-dimensional Vlasov equation[J]. Journal of Computational Physics, 1977, 24(4):445-449. [16] Shoucri M, Gagne R R J. Numerical solution of the vlasov equation by transform methods[J]. Journal of Computational Physics, 1976, 21(2):238-242. [17] Joyce G, Knorr G, Meier H K. Numerical integration methods of the Vlasov equation[J]. Journal of Computational Physics, 1971, 8(1):53-63. [18] 任玉新, 陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社, 2006, ISBN:7302130043. [19] 李大潜, 秦铁虎. 物理学与偏微分方程(第2版)(下册)[M]. 北京:高等教育出版社, 2005, ISBN:7040159546. [20] 何汉林, 梅家斌. 数值分析[M]. 北京:科学出版社, 2007:151-152, ISBN:9787030185259.
 [1] 郭峰. 非线性耦合Schrödinger-KdV方程组的一个局部能量守恒格式[J]. 数值计算与计算机应用, 2018, 40(3): 313-324. [2] 程晓晗, 封建湖. 求解相对论流体力学方程的低耗散中心迎风格式[J]. 数值计算与计算机应用, 2018, 39(1): 37-43. [3] 唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 数值计算与计算机应用, 2017, 39(3): 309-320. [4] 唐玲艳, 傅浩, 宋松和. 三维非结构网格上求解双曲型守恒律方程的一类三阶精度有限体积格式[J]. 数值计算与计算机应用, 2013, 34(3): 212-220. [5] 宋艳萍, 黄华, 恰汗·合孜尔. Wangerin函数Smn(μ)的数值计算及数值可视化分析[J]. 数值计算与计算机应用, 2013, 34(1): 1-8. [6] 王兆胜. R-K-F方法在外弹道计算与火控系统中的应用[J]. 数值计算与计算机应用, 2012, (1): 41-47. [7] 姚彦忠, 袁光伟, 莫则尧. 大规模科学与工程计算中舍入方式对计算置信度的影响[J]. 数值计算与计算机应用, 2011, 32(1): 23-32. [8] 徐金平, 单双荣. 带五次项的非线性Schrödinger方程的多辛Fourier拟谱算法[J]. 数值计算与计算机应用, 2010, 31(1): 55-63. [9] 张铁,祝丹梅. 美式期权定价问题的变网格差分方法[J]. 数值计算与计算机应用, 2008, 30(4): 379-387. [10] 梁宗旗,许传炬,. 非线性Kundu方程的弱守恒差分格式[J]. 数值计算与计算机应用, 2007, 29(3): 305-318. [11] 唐玲艳,宋松和. 双曲型守恒律方程的小波解法[J]. 数值计算与计算机应用, 2007, 28(1): 11-17. [12] 黄浪扬. 非线性Pochhammer-Chree方程的多辛格式[J]. 数值计算与计算机应用, 2005, 27(1): 96-0. [13] 应隆安,季晓梅,邓炯. 一个求解多维守恒律方程组的二阶显式有限元格式[J]. 数值计算与计算机应用, 2001, 23(3): 321-332. [14] 汤华中. 一个刚性守恒律方程组的全隐式差分方法[J]. 数值计算与计算机应用, 2001, 23(2): 129-138. [15] 张虎,赵宁. 利用通量限制的高分辨Godunov型格式的熵条件[J]. 数值计算与计算机应用, 1999, 21(1): 59-64.
 Copyright © 2008 数值计算与计算机应用 版权所有 中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部 北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn京ICP备05002806号-10