数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2018, Vol. 39 Issue (1): 37-43    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
求解相对论流体力学方程的低耗散中心迎风格式
程晓晗, 封建湖
长安大学理学院, 西安 710064
A LOW DISSIPATION CENTRAL-UPWIND SCHEME FOR RELATIVISTIC HYDRODYNAMIC EQUATIONS
Cheng Xiaohan, Feng Jianhu
School of Science, Chang'an University, Xi'an 710064, China
 全文: PDF (522 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对一维相对论流体力学方程,给出一种数值求解方法.该方法以低耗散中心迎风数值通量为基础,通过分片线性重构来获得空间上的二阶精度,最后采用强稳定龙格库塔方法在时间方向上推进.数值算例验证了该方法的有效性和基本无振荡性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词相对论流体力学方程   中心迎风格式   守恒律     
Abstract: A numerical method is presented for solving relativistic hydrodynamic equations. The scheme, mainly based on the low dissipation central-upwind numerical flux, is second order accurate in space by employing piecewise linear reconstruction. Time integration is carried out with strong stability preserving Runge-Kutta method. Several numerical examples are provided to demonstrate the method s effectiveness and non-oscillation property.
Key wordsRelativistic hydrodynamic equations   Central upwind scheme   Conservation laws   
收稿日期: 2017-02-24;
基金资助:

国家自然科学基金(11601037,11401045)和中央高校基本科研业务费(310812171002)资助.

引用本文:   
. 求解相对论流体力学方程的低耗散中心迎风格式[J]. 数值计算与计算机应用, 2018, 39(1): 37-43.
. A LOW DISSIPATION CENTRAL-UPWIND SCHEME FOR RELATIVISTIC HYDRODYNAMIC EQUATIONS[J]. Journal of Numerical Methods and Computer Applicat, 2018, 39(1): 37-43.
 
[1] Wilson J R. Numerical study of fluid flow in a kerr space[J]. Astrophysical Journal, 1972, 173(2): 388-391.
[2] Eulderink F, Mellema G. General relativistic hydrodynamics with a Roe solver[J]. Physics, 1994, 110(3): 587-623.
[3] Donat R, Font J A, Ibáñez J M a, et al. A flux-split algorithm applied to relativistic flows[J]. Journal of Computational Physics, 1998, 146(1): 58-81.
[4] Kunik M, Qamar S, Warnecke G. Kinetic schemes for the ultra-relativistic Euler equations[J]. Journal of Computational Physics, 2003, 187(2): 572-596.
[5] Mignone A, Bodo G. An HLLC Riemann solver for relativistic flows I. Hydrodynamics[J]. Monthly Notices of the Royal Astronomical Society, 2005, 364(1): 126-136.
[6] Tchekhovskoy A, Mckinney J C, and Narayan R. WHAM: A WENO-based general relativistic numerical scheme I. Hydrodynamics[J]. Monthly Notices of the Royal Astronomical Society, 2007, 379(2): 469-497.
[7] Qamar S, Yousaf M. Application of a discontinuous Galerkin finite element method to special relativistic hydrodynamic models[J]. Computers & Mathematics with Applications, 2013, 65(8): 1220-1232.
[8] Wu K, Tang H. High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics[J]. Journal of Computational Physics, 2015, 298: 539-564.
[9] Zhao J, Tang H. Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics[J]. Journal of Computational Physics, 2013, 242(242): 138-168.
[10] Yang Z, He P, Tang H. A direct Eulerian GRP scheme for relativistic hydrodynamics: Onedimensional case[J]. Journal of Computational Physics, 2011, 230(22): 7964-7987.
[11] Yang Z, Tang H. A direct Eulerian GRP scheme for relativistic hydrodynamics: Two-dimensional case[J]. Journal of Computational Physics, 2012, 231(4): 2116-2139.
[12] Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations[J]. Journal of Computational Physics, 2000, 160(1): 241-282.
[13] Kurganov A, Noelle S, Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM Journal on Scientific Computing, 2001, 23(3): 707-740.
[14] Kurganov A,Lin C T. On the reduction of numerical dissipation in central-upwind schemes[J]. Communications in Computational Physics, 2007, 2(1): 141-163.
[15] Gottlieb S, Ketcheson D I, Shu C W. High order strong stability preserving time discretizations[J]. Journal of Scientific Computing, 2009, 38(3): 251-289.
[16] 杨智成. 可压缩无粘流体力学方程组GRP格式的研究[D]. 北京:北京大学, 2013.
[1] 唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 数值计算与计算机应用, 2017, 39(3): 309-320.
[2] 唐玲艳, 傅浩, 宋松和. 三维非结构网格上求解双曲型守恒律方程的一类三阶精度有限体积格式[J]. 数值计算与计算机应用, 2013, 34(3): 212-220.
[3] 徐金平, 单双荣. 带五次项的非线性Schrödinger方程的多辛Fourier拟谱算法[J]. 数值计算与计算机应用, 2010, 31(1): 55-63.
[4] 唐玲艳,宋松和. 双曲型守恒律方程的小波解法[J]. 数值计算与计算机应用, 2007, 28(1): 11-17.
[5] 黄浪扬. 非线性Pochhammer-Chree方程的多辛格式[J]. 数值计算与计算机应用, 2005, 27(1): 96-0.
[6] 应隆安,季晓梅,邓炯. 一个求解多维守恒律方程组的二阶显式有限元格式[J]. 数值计算与计算机应用, 2001, 23(3): 321-332.
[7] 汤华中. 一个刚性守恒律方程组的全隐式差分方法[J]. 数值计算与计算机应用, 2001, 23(2): 129-138.
[8] 张虎,赵宁. 利用通量限制的高分辨Godunov型格式的熵条件[J]. 数值计算与计算机应用, 1999, 21(1): 59-64.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10