数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2018, Vol. 39 Issue (1): 1-9    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
精细油藏模拟的一种线性求解算法
李政1, 吴淑红2, 李巧云2, 张晨松3, 王宝华4, 许进超5, 赵颖6
1. 昆明理工大学, 昆明 650504;
2. 中国石油勘探开发研究院, 北京 100083;
3. 中国科学院数学与系统科学研究院科学与工程计算国家重点实验室, 北京 100085;
4. 中国石油勘探开发研究院, 北京 100083;
5. 美国宾夕法尼亚州立大学, 美国;
6. 中国石油大港油田公司, 天津 300000
A NEW LINEAR SOLVER FOR FINE-SCALE RESERVOIR SIMULATION
Li Zheng1, Wu Shuhong2, Li Qiaoyun2, Zhang Chensong3, Wang Baohua4, Xu Jinchao5, Zhao Ying6
1. Kunming University of Science and Technology, Yunnan 650504, China;
2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
3. LSEC & NCMIS, Academy of Mathematics and Systems Science, Beijing 100085, China;
4. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
5. Department of Mathematics, Penn State University, University Park, USA;
6. Dagang Oilfield, PetroChina Tianjin 300000, China
 全文: PDF (3111 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对油藏数值模拟中黑油模型方程的各个物理量的性质,利用ABF解耦方法和子空间校正算法提出一种分裂型预条件子,并与Krylov子空间方法结合,设计了一种线性求解算法.我们基于某实际油田区块构建了粗、细两个油藏模型,并将它们模拟计算得到的油产量与油田实际产量进行对比,结果表明精细油藏数值模拟对油田生产实践具有重要指导意义,开展面向精细油藏模拟的大规模数值算法研究是十分必要的.我们在台式工作站上使用所设计的线性求解算法测试了SPE10标准算例及由其拼接而成的千万网格规模算例,计算结果表明该算法能有效求解大规模油藏模拟问题.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词精细油藏数值模拟   多层网格法   Krylov子空间方法   多阶段预条件技术     
Abstract: According to physical variables of black-oil model in reservoir simulation own different characterize, we combine the ABF decoupling method and subspace correction method to design a splitting preconditioner to accelerate the Krylov method. We firstly build two coarse and fine models based on some real reservoir block, and compare predicated daily oil productions of these two models with the observed data, the comparison demonstrates the significance of fine-scale reservoir simulation, which indicates the need to develop efficient linear solver for fine-large reservoir simulation. We then employ the proposed linear solver to solve the SPE10 benchmark and a model with ten millions cells spliced by the SPE10 benchmark on a desktop computer, and numerical results indicate that the proposed linear solver is very efficient.
Key wordsFine-scale reservoir simulation   multigrid   Krylov subspace method   multistage preconditioning   
收稿日期: 2016-11-07;
基金资助:

中国科学院前沿科学研究重点计划;中国石油天然气股份有限公司“新一代油藏数值模拟软件3.0版研制”课题(2014A-1008);“大规模、高效代数方程解法模块研究”专题(2011A-1010-01).

引用本文:   
. 精细油藏模拟的一种线性求解算法[J]. 数值计算与计算机应用, 2018, 39(1): 1-9.
. A NEW LINEAR SOLVER FOR FINE-SCALE RESERVOIR SIMULATION[J]. Journal of Numerical Methods and Computer Applicat, 2018, 39(1): 1-9.
 
[1] Dogru A H, Fung L S, Al-Shaalan T M, Middya U, Pita J A, et al. From Mega Cell to Giga Cell Reservoir Simulation[C]. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2008.
[2] Dogru A H, Fung L S K, Middya U, Al-Shaalan T M, Byer T, Hoy H, Hahn W A, Al-Zamel N, Pita J A, Hemanthkumar K, et al. New frontiers in large scale reservoir simulation[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2011.
[3] Saad Y. Iterative methods for sparse linear systems[M]. SIAM, 2003.
[4] Behie G A, PA Forsyth J. Incomplete factorization methods for fully implicit simulation of enhanced oil recovery[J]. SIAM Journal on Scientific and Statistical Computing, 1984, 5(3):543-561.
[5] Appleyard J, Cheshire I, Pollard R. Special techniques for fully implicit simulators[C]. In Preceeding, European Symposium on Enhanced Oil Recovery, Bournemouth, England, pages 395-408, 1981.
[6] Appleyard J, et al. Nested factorization[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1983.
[7] Behie A, Vinsome P, et al. Block iterative methods for fully implicit reservoir simulation[J]. Society of Petroleum Engineers Journal, 1982, 22(05):658-668.
[8] Al-Shaalan T M, Klie H M, Dogru A H, Wheeler M F, et al. Studies of robust two stage preconditioners for the solution of fully implicit multiphase flow problems[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2009.
[9] Lacroix S, Vassilevski Y, Wheeler J, Wheeler M. Iterative solution methods for modeling multiphase flow in porous media fully implicitly[J]. SIAM Journal on Scientific Computing, 2003, 25(3):905-926.
[10] Scheichl R, Masson R, Wendebourg J. Decoupling and block preconditioning for sedimentary basin simulations[J]. Computational Geosciences, 2003, 7(4):295-318.
[11] Wallis J, et al. Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1983.
[12] Bank R E, Chan T F, Jr W M C, Smith R K. The Alternate-Block-Factorization procedure for systems of partial differential equations[J]. BIT Numerical Mathematics, 1989, 29(4):938-954.
[13] Chen Z, Huan G, Ma Y. Computational methods for multiphase flows in porous media[M], volume 2. SIAM, 2006.
[14] Li Z, Wu S, Zhang C-S, Xu J, Feng C, and Hu X. Numerical studies of a class of linear solvers for fine-scale petroleum reservoir simulation. Computing and Visualization in Science, accepted.
[15] Hu X, Xu J, and Zhang C-S. Application of auxiliary space preconditioning in field-scale reservoir simulation. Science China Mathematics, 56(12):2737-2751, 2013.
[16] Hu X, Liu W, Qin G, Xu J, Yan Y, Zhang C-S, Zhang S. A Fast Auxiliary Space Preconditioners for Numerical Reservoir Simulations[J]. SPE Reservoir Characterization and Simulation Conference, 2011.
[17] Klie H M. Krylov-secant methods for solving large-scale systems of coupled nonlinear parabolic equations[D]. PhD thesis, Rice University, 1997.
[18] Stueben K, Clees T, Klie H, Lu B, Wheeler M F, et al. Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007.
[19] Trangenstein J A, Bell J B. Mathematical structure of the black-oil model for petroleum reservoir simulation[J]. SIAM Journal on Applied Mathematics, 1989, 49(3):749-783.
[20] Xu J. Iterative methods by space decomposition and subspace correction[J]. SIAM review, 1992, 34(4):581-613.
[21] Xu J, Zhu Y. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients[J]. Mathematical Models and Methods in Applied Sciences, 2008, 18(01):77-105.
[22] Saad Y. A flexible inner-outer preconditioned GMRES algorithm[J]. SIAM Journal on Scientific Computing, 1993, 14(2):461-469.
[23] Baker A H, Jessup E R, Kolev T V. A simple strategy for varying the restart parameter in GMRES (m)[J]. Journal of Computational and Applied Mathematics, 2009, 230(2):751-761.
[24] Christie M, Blunt M, et al. Tenth SPE comparative solution project:A comparison of upscaling techniques[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2001.
[1] 李姣芬, 张晓宁, 彭振, 彭靖静. 基于交替投影算法求解单变量线性约束矩阵方程问题[J]. 数值计算与计算机应用, 2014, 36(2): 143-162.
[2] 陈金海,李维国. 具优势对称部分的非对称非线性问题的不精确Newton分裂算法[J]. 数值计算与计算机应用, 2005, 26(1): 13-25.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10