首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 |
 数值计算与计算机应用  2018, Vol. 39 Issue (1): 1-9    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 |  Next Articles

1. 昆明理工大学, 昆明 650504;
2. 中国石油勘探开发研究院, 北京 100083;
3. 中国科学院数学与系统科学研究院科学与工程计算国家重点实验室, 北京 100085;
4. 中国石油勘探开发研究院, 北京 100083;
5. 美国宾夕法尼亚州立大学, 美国;
6. 中国石油大港油田公司, 天津 300000
A NEW LINEAR SOLVER FOR FINE-SCALE RESERVOIR SIMULATION
Li Zheng1, Wu Shuhong2, Li Qiaoyun2, Zhang Chensong3, Wang Baohua4, Xu Jinchao5, Zhao Ying6
1. Kunming University of Science and Technology, Yunnan 650504, China;
2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
3. LSEC & NCMIS, Academy of Mathematics and Systems Science, Beijing 100085, China;
4. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
5. Department of Mathematics, Penn State University, University Park, USA;
6. Dagang Oilfield, PetroChina Tianjin 300000, China
 全文: PDF (3111 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章

Abstract： According to physical variables of black-oil model in reservoir simulation own different characterize, we combine the ABF decoupling method and subspace correction method to design a splitting preconditioner to accelerate the Krylov method. We firstly build two coarse and fine models based on some real reservoir block, and compare predicated daily oil productions of these two models with the observed data, the comparison demonstrates the significance of fine-scale reservoir simulation, which indicates the need to develop efficient linear solver for fine-large reservoir simulation. We then employ the proposed linear solver to solve the SPE10 benchmark and a model with ten millions cells spliced by the SPE10 benchmark on a desktop computer, and numerical results indicate that the proposed linear solver is very efficient.

 引用本文: . 精细油藏模拟的一种线性求解算法[J]. 数值计算与计算机应用, 2018, 39(1): 1-9. . A NEW LINEAR SOLVER FOR FINE-SCALE RESERVOIR SIMULATION[J]. Journal of Numerical Methods and Computer Applicat, 2018, 39(1): 1-9.

 [1] Dogru A H, Fung L S, Al-Shaalan T M, Middya U, Pita J A, et al. From Mega Cell to Giga Cell Reservoir Simulation[C]. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2008. [2] Dogru A H, Fung L S K, Middya U, Al-Shaalan T M, Byer T, Hoy H, Hahn W A, Al-Zamel N, Pita J A, Hemanthkumar K, et al. New frontiers in large scale reservoir simulation[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2011. [3] Saad Y. Iterative methods for sparse linear systems[M]. SIAM, 2003. [4] Behie G A, PA Forsyth J. Incomplete factorization methods for fully implicit simulation of enhanced oil recovery[J]. SIAM Journal on Scientific and Statistical Computing, 1984, 5(3):543-561. [5] Appleyard J, Cheshire I, Pollard R. Special techniques for fully implicit simulators[C]. In Preceeding, European Symposium on Enhanced Oil Recovery, Bournemouth, England, pages 395-408, 1981. [6] Appleyard J, et al. Nested factorization[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1983. [7] Behie A, Vinsome P, et al. Block iterative methods for fully implicit reservoir simulation[J]. Society of Petroleum Engineers Journal, 1982, 22(05):658-668. [8] Al-Shaalan T M, Klie H M, Dogru A H, Wheeler M F, et al. Studies of robust two stage preconditioners for the solution of fully implicit multiphase flow problems[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2009. [9] Lacroix S, Vassilevski Y, Wheeler J, Wheeler M. Iterative solution methods for modeling multiphase flow in porous media fully implicitly[J]. SIAM Journal on Scientific Computing, 2003, 25(3):905-926. [10] Scheichl R, Masson R, Wendebourg J. Decoupling and block preconditioning for sedimentary basin simulations[J]. Computational Geosciences, 2003, 7(4):295-318. [11] Wallis J, et al. Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1983. [12] Bank R E, Chan T F, Jr W M C, Smith R K. The Alternate-Block-Factorization procedure for systems of partial differential equations[J]. BIT Numerical Mathematics, 1989, 29(4):938-954. [13] Chen Z, Huan G, Ma Y. Computational methods for multiphase flows in porous media[M], volume 2. SIAM, 2006. [14] Li Z, Wu S, Zhang C-S, Xu J, Feng C, and Hu X. Numerical studies of a class of linear solvers for fine-scale petroleum reservoir simulation. Computing and Visualization in Science, accepted. [15] Hu X, Xu J, and Zhang C-S. Application of auxiliary space preconditioning in field-scale reservoir simulation. Science China Mathematics, 56(12):2737-2751, 2013. [16] Hu X, Liu W, Qin G, Xu J, Yan Y, Zhang C-S, Zhang S. A Fast Auxiliary Space Preconditioners for Numerical Reservoir Simulations[J]. SPE Reservoir Characterization and Simulation Conference, 2011. [17] Klie H M. Krylov-secant methods for solving large-scale systems of coupled nonlinear parabolic equations[D]. PhD thesis, Rice University, 1997. [18] Stueben K, Clees T, Klie H, Lu B, Wheeler M F, et al. Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007. [19] Trangenstein J A, Bell J B. Mathematical structure of the black-oil model for petroleum reservoir simulation[J]. SIAM Journal on Applied Mathematics, 1989, 49(3):749-783. [20] Xu J. Iterative methods by space decomposition and subspace correction[J]. SIAM review, 1992, 34(4):581-613. [21] Xu J, Zhu Y. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients[J]. Mathematical Models and Methods in Applied Sciences, 2008, 18(01):77-105. [22] Saad Y. A flexible inner-outer preconditioned GMRES algorithm[J]. SIAM Journal on Scientific Computing, 1993, 14(2):461-469. [23] Baker A H, Jessup E R, Kolev T V. A simple strategy for varying the restart parameter in GMRES (m)[J]. Journal of Computational and Applied Mathematics, 2009, 230(2):751-761. [24] Christie M, Blunt M, et al. Tenth SPE comparative solution project:A comparison of upscaling techniques[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2001.
 [1] 李姣芬, 张晓宁, 彭振, 彭靖静. 基于交替投影算法求解单变量线性约束矩阵方程问题[J]. 数值计算与计算机应用, 2014, 36(2): 143-162. [2] 陈金海,李维国. 具优势对称部分的非对称非线性问题的不精确Newton分裂算法[J]. 数值计算与计算机应用, 2005, 26(1): 13-25.
 Copyright © 2008 数值计算与计算机应用 版权所有 中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部 北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn京ICP备05002806号-10