数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2017, Vol. 38 Issue (4): 312-326    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
各向异性扩散方程的高精度算法
宋淑红1, 王双虎1,2
1. 北京应用物理与计算数学研究所, 北京 100094;
2. 北京应用物理与计算数学研究所计算物理实验室, 北京 100088
HIGH ACCURATE COMPUTATION OF DIFFUSION EQUATIONS WITH ANISOTROPIC COEFFICIENTS
Song Shuhong1, Wang Shuanghu1,2
1. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
2. National Key Laboratory of Computational Physics, Beijing 100088, China
 全文: PDF (438 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对多介质各向异性扩散方程,本文设计了一种非结构多边形网格高精度有限体积计算格式.为了能适应网格大变形,在构造格式框架时除了用到单元中心量外还引入了节点量作为中间变量,并通过推广孪生逼近算法于各向异性扩散系数情形消除节点量,使算法回归于单元中心量计算流程.数值算例表明,该方法能较好适应大变形网格及间断系数各向异性扩散方程计算.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词各向异性扩散系数   孪生逼近   节点量计算方法   大变形网格     
Abstract: In this paper, a high accurate finite volume method is given for diffusion equations with anisotropic diffusion coefficients on unstructured meshes. In order to deal with distorted meshes, the vertex unknowns are introduced as the middle quantities in the construction of this method besides the cell-centered unknowns. The "twin-fitting" method is applied to computing the vertex unknowns for diffusion equations with anisotropic coefficients, so that the resulting method is solved by the cell-centered unknowns. Numerical experiments show that this method can deal with distorted meshes and anisotropic diffusion coefficient problem.
Key wordsanisotropic diffusion coefficients   “twin-fitting&rdquo   method   the treatment for the vertex unknowns   distorted meshes   
收稿日期: 2017-04-23;
基金资助:

国家自然科学基金项目(11001024,11501040,u1630247)资助.

引用本文:   
. 各向异性扩散方程的高精度算法[J]. 数值计算与计算机应用, 2017, 38(4): 312-326.
. HIGH ACCURATE COMPUTATION OF DIFFUSION EQUATIONS WITH ANISOTROPIC COEFFICIENTS[J]. Journal of Numerical Methods and Computer Applicat, 2017, 38(4): 312-326.
 
[1] Aavatsmark I, Barkve T, Bøe Ø, Aannseth T. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I:Derivation of the methods[J]. SIAM J. Sci. Comput., 1998, 19:1700-1716.
[2] Aavatsmark I, Barkve T, Bøe Ø, Aannseth T. Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II:Discussion and numerical results[J]. SIAM J. Sci. Comput., 1998, 19:1717-1736.
[3] Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids[J]. Comput. Geosci., 2002, 6:405-432.
[4] 符尚武, 付汉清, 沈隆钧. 二维三温热传导方程组的九点差分格式[J]. 数值计算与计算机应用, 1999, 20:237-240. 浏览
[5] Hermeline F. A finite volume method for the approximation of diffusion operators on distorted meshes[J]. J. Comput. Phys., 2000, 160:481-499.
[6] Hermeline F. Approxiamtion of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes[J]. Comput. Meth. Appl. Mech. Engrg., 2007, 196:2497-2526.
[7] Kershaw D S. Differencing of the diffusion equation in Lagrangian hydrodynamic codes[J]. J. Comput. Phys., 1981, 39:375-395.
[8] Morel J E, Roberts R M and Shashkov M J. A Local Support-Operators Diffusion Discretization Scheme for Quadrilateral r-z Meshes[J]. J. Comput. Phys., 1998, 144:17-51.
[9] 宋淑红, 王双虎. 带间断扩散系数热传导方程的新型自适应数值解法[J]. 应用数学学报, 2010, 33(5):942-959.
[10] 宋淑红, 王双虎. 带间断扩散系数热传导方程的高精度数值模拟方法研究[J]. 应用数学学报, 2011, 34(2):229-239.
[11] 宋淑红, 王双虎. 多介质大变形扩散问题的一种简单高精度算法[J]. 应用数学学报, 2014, 37(2):367-378.
[12] Sheng Z Q and Yuan G W. A nine-point scheme for the approxiamtion of diffusion operators on distored quadrilateral meshes[J]. SIAM J. Sci. Comput., 2008, 30(3):1341-1361.
[13] Wu J M, Dai Z H, Gao Z M and Yuan G W. Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes[J]. J. Comput. Phys., 2010, 229:3382-3401.
[14] Wu J M and Gao Z M. A nine-point scheme with explicit weights for diffusion equation on distorted meshes[J]. Appl. Numer. Math., 2011, 61:844-867.
[15] Zhukov V T and Feodoritova O B. Difference schemes for the heat condunction equation based on local least-squares approximations, Preprint No, 97, IPMathem. Akad. Nauk S. S. S. R., Moscow, 1989.
没有找到本文相关文献
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10