数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2017, Vol. 38 Issue (4): 256-270    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
二次正交Arnoldi方法的隐式重启算法
龚方徽, 孙玉泉, 杨柳
北京航空航天大学数学与系统科学研究院, 数学、信息与行为教育部重点实验室, 北京 100191
IMPLICITLY RESTARTED TWO-LEVEL ORTHOGONAL ARNOLDI ALGORITHMS
Gong Fanghui, Sun Yuquan, Yang Liu
LMIB, School of Mathematics and Systems Science, BeiHang University, Beijing 100191, China
 全文: PDF (458 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 二次正交Arnoldi方法的存储量小并能保持与标准Arnoldi方法类似的数值稳定性和收敛性,因此成为求解二次特征值问题的重要方法.算法的运行过程中计算量和存储量会不断增加,将算法进行重新启动是算法在实际使用中的必然需求,该方法的特殊分解形式对算法的重启提出了新要求.本文分析了该方法所形成子空间的性质和重启时子空间应具有的形式和性质,提出了一种能够保持算法特殊子空间结构且简便易实现的重启方法.在此基础上分别使用Schur分解、准确位移与精化位移,给出了三种二次正交Arnoldi方法的重启算法.理论分析和数值算例都表明,这些新的重启算法在最大存储量固定的情况下具有很好的可行性与有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词二次特征值问题   TOAR   重新启动   位移   投影方法     
Abstract: The memory-efficient Two-level Orthogonal Arnoldi method can maintain the similar numerical stability and convergence to the standard Arnoldi method, therefore it becomes an important method to solve quadratic eigenvalue problems. It is inevitable to restart the algorithm in practical applications since the computation and storage continue to increase during the process. The special structure of decomposition puts forward new requirements for the restarted algorithm. In this paper, we analyse the properties of the restarted subspace and propose a restarted method which maintains the special structure. On the basis of that, we use Schur decomposition, exact shifts and refined shifts within the restarted method to obtain three restarted algorithms. Theoretical analysis and numerical results illustrate the efficiency of the restarted algorithms under fixed maximum storage.
Key wordsQEP   TOAR   implicitly restart   shifts   projection method   
收稿日期: 2016-09-21;
基金资助:

国家自然科学基金(11201020,61471015)资助项目.

引用本文:   
. 二次正交Arnoldi方法的隐式重启算法[J]. 数值计算与计算机应用, 2017, 38(4): 256-270.
. IMPLICITLY RESTARTED TWO-LEVEL ORTHOGONAL ARNOLDI ALGORITHMS[J]. Journal of Numerical Methods and Computer Applicat, 2017, 38(4): 256-270.
 
[1] Bai Z, Su Y. SOAR:A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem[J]. SIAM J Matrix Anal Appl, 2005, 26(3):640-659.
[2] Zhu J. Structured Eigenvalue Problems and Quadratic Eigenvalue Problems[D]. PhD thesis, Department of Mathematics, University of California, Berkeley, CA, 2005.
[3] Su Y, Zhang J, Bai Z. A compact Arnoldi algorithm for Polynomial Eigenvalue Problems[R]. RANMEP2008, 2008.
[4] Lu D, Su Y, Bai Z. Stability Analysis of the Two-level Orthogonal Arnoldi Procedure[J]. SIAM J Matrix Anal Appl, 2016, 37(1):195-214.
[5] Zhang Y, Su Y. A memory-efficient model order reduction for time-delay systems[J]. BIT, 2013, 53(4):1047-1073.
[6] Kressner D, Roman J E. Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis[J]. Numer Linear Algebr, 2014, 21(4):569-588.
[7] Beeumen R V. Compact rational Krylov methods for nonlinear eigenvalue problems[J]. SIAM J Matrix Anal Appl, 2015, 36(2):820-838.
[8] Campos C, Roman J E. Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc[J/OL]. 2015, http://users.dsic.upv.es/jroman/preprints/pepslepc.pdf
[9] Jia Z, Sun Y. Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem[J]. Taiwan J Math, 2015, 19(1):1-30.
[10] Gong F, Sun Y. A new shift strategy for the implicitly restarted generalized second-order Arnoldi method (in Chinese)[J]. Sci Sin Math, 2017, 47(5):635-650.
[11] Sorensen D C. Implicit application of polynomial filters in a k-step Arnoldi method[J]. SIAM J Matrix Anal Appl, 1990, 13(1):357-385.
[12] Jia Z. Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm[J]. Linear Algebra Appl, 1999, 287(1-3):191-214.
[13] Jia Z. The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices[J]. Appl Numer Math, 2002, 42(4):489-512.
[14] Betcke T, Higham N J, Mehrmann V, et al. NLEVP:A Collection of Nonlinear Eigenvalue Problems[J]. ACM TOMS, 2013, 39(2):254-261.
[15] Tisseur F, Meerbergen K. The Quadratic Eigenvalue Problem[J]. SIAM Rev, 2001, 43(2):235-286.
[1] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 数值计算与计算机应用, 2016, 38(4): 429-441.
[2] 刘皞, 李超. 多右端线性方程组的块种子投影方法[J]. 数值计算与计算机应用, 2014, 35(3): 221-228.
[3] 周琴, 潘雪琴, 冯民富. 对流占优的Sobolev方程的投影稳定化有限元方法[J]. 数值计算与计算机应用, 2014, 36(1): 99-112.
[4] 曹阳, 陶怀仁, 蒋美群. 鞍点问题的广义位移分裂预条件子[J]. 数值计算与计算机应用, 2014, 36(1): 16-26.
[5] 陈春岳, 蒋耀林. 时域投影模型降阶方法的小样本误差估计[J]. 数值计算与计算机应用, 2012, 33(4): 283-292.
[6] 孔艳花, 戴华. 求解陀螺系统特征值问题的收缩二阶Lanczos方法[J]. 数值计算与计算机应用, 2011, 33(3): 328-336.
[7] 罗兴钧, 李繁春, 杨素华. 最优投影策略下解病态积分方程的快速迭代算法[J]. 数值计算与计算机应用, 2011, 33(1): 1-14.
[8] 陈芳, 蒋耀林. 关于位移线性方程组的加速超松弛迭代算法[J]. 数值计算与计算机应用, 2010, 32(4): 423-432.
[9] 杨婧, 徐仲, 陆全. 求Sylvester矩阵逆矩阵的快速算法[J]. 数值计算与计算机应用, 2010, 31(2): 92-98.
[10] 李友云, 崔俊芝, 郑健龙. 一种颗粒随机分布复合材料弹性位移场均匀化方法的理论分析[J]. 数值计算与计算机应用, 2009, 31(3): 275-286.
[11] 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320.
[12] 牛大田; 贾仲孝; 王侃民. 计算最小奇异组的一个精化调和 Lanczos双对角化方法[J]. 数值计算与计算机应用, 2008, 30(3): 311-326.
[13] 解惠青,戴华,. 多参数二次特征值问题重特征值的灵敏度分析[J]. 数值计算与计算机应用, 2006, 28(1): 75-88.
[14] 顾桂定,朱文跃. 多右端非对称位移方程组的种子投影方法[J]. 数值计算与计算机应用, 2004, 26(2): 211-224.
[15] 贾仲孝,牛大田. 计算部分奇异值分解的隐式重新启动的双对角化Lanczos方法和精化的双对角化Lanczos方法[J]. 数值计算与计算机应用, 2004, 26(1): 13-24.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10