数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2015, Vol. 36 Issue (4): 241-251    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于改进型UPML吸收边界条件的电磁波数值模拟
魏丽君1, 张彬2, 陈志康3
1. 湖南铁道职业技术学院铁道供电与电气学院, 湖南株洲 412001;
2. 中南大学地球科学与信息物理学院, 长沙 410083;
3. 湖南省永龙高速公路建设开发有限公司, 湖南永顺 416700
THE NUMERICAL MODELING OF ELECTROMAGNETIC WAVES BASED ON THE IMPROVED UPML ABSORBING BOUNDARY CONDITION
Wei Lijun1, Zhang Bin2, Chen Zhikang3
1. Department of Electrical Engineering, Hunan Railway Professional Technology College, Zhuzhou 412001, Hunan, China;
2. School of Geosicences and Info-Physics, Central South University, Changsha 410083, China;
3. Hunan Yong Long Highway Construction Development Co., LTD, Yongshun 416700, China
 全文: PDF (1307 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于分裂场的完全匹配层(PML)吸收边界条件完成了对非物理反射波的吸收,初步实现了有限区域对无限开放空间的数值模拟,然而在计算区域的边界上需要对场分量进行分裂,增加了Maxwell方程组中独立方程的个数,使场分量迭代复杂,增大了数值计算量.单轴各向异性完全匹配层(UPML)边界条件则不需要对场分量进行分裂,迭代公式简单,便于程序实现,本文在常规UPML上增加了自由可变因子,使得对低频成分的反射波具有更好的吸收效果.本文首先推导了TMz波的改进型UPML方程组,给出了改进型UPML的介电参数分布方式,详细介绍了该算法的程序实现步骤,并以数值算例进行验证,分别采用基于分裂场的PML、常规UPML和改进型UPML边界条件进行数值计算,并从波场快照、时间域反射误差和频率域反射误差等方面,对比了三者的吸收效果,结果表明;在电磁波传播后期,改进型UPML吸收边界条件对低频率成分的反射波具有更好的吸收效果,更真实地模拟了开放的无限空间.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词数值模拟   频率域反射误差   时间域反射误差   吸收边界条件   单轴各向异性完全匹配层   自由可变因子     
Abstract: The split Perfectly Matched Layer (PML) Absorbing Boundary Condition (ABC) accomplished the absorption of nonphysical reflections, preliminarily realized the numerical modeling of open infinite space to the finite area, however, on the edge of the ABC area, the field component in calculation need to be split, which will increasing the number of independent equations and the calculation capacity in Maxwell's equations. The Uniaxial-anisotropic Perfectly Matched Layer (UPML) boundary conditions do not need to split the field component, and the iterative formula is easy convenient to programming, except to the decay parameters in the conventional UPML, another two real variable factors are introduced, which is exclusively for the reflections of low frequency. The TMZ wave equations of improved UPML is deduced, the dielectric parameter distribution mode is given, and the program implementation steps of the algorithm was introduced in detail,then the merits were verified by a numerical modeling example of electromagnetic waves, with the split PML, the conventional UPML and the improved UPML boundary conditions, respectively, by comparing the absorption effect from the aspects of the snapshots, and the time domain reflection errors and the frequency domain reflection errors, the results show that the improved UPML boundary condition possess an apparent advantage over absorbing the low frequency reflections in the latter period of the wave propagation, which is more realistically simulates the infinite and open space with little truncation.
Key wordsNumerical modeling   Frequency Domain Reflection Errors   Time Domain Reflection Errors   Absorbing boundary condition   Uniaxial-anisotropic Perfectly Matched Layer   Real variable factor   
收稿日期: 2015-04-20;
基金资助:

湖南省教育厅科研青年项目(15B156).

引用本文:   
. 基于改进型UPML吸收边界条件的电磁波数值模拟[J]. 数值计算与计算机应用, 2015, 36(4): 241-251.
. THE NUMERICAL MODELING OF ELECTROMAGNETIC WAVES BASED ON THE IMPROVED UPML ABSORBING BOUNDARY CONDITION[J]. Journal of Numerical Methods and Computer Applicat, 2015, 36(4): 241-251.
 
[1] Goodman D. Ground-penetrating radar simulation in engineering and archeology[J]. Geophysics, 1994, 59:224-232.
[2] Cai J. Ray-based synthesis of bistatic ground-penetrating radar profiles[J]. Geophysics, 1995, 60:87-96.
[3] Powers M H, Olhoeft G R. Modeling dispersive ground penetrating radar data[C]. Proceedings of the 5th International Conference on Ground-Penetrating Radar. Waterloo, Ontario, 1994, 173-183.
[4] Zeng X, McMechan, G A, Cai J, et al. Comparison of ray and Fourier methods for modeling monostatic ground-penetrating radar profiles[J]. Geophysics, 1995, 60:1727-1734.
[5] Ellefsen K J. Effects of layered sediments on the guided wave in crosswell radar data[J]. Geophysics, 1999, 64:1698-1707.
[6] Carcione J M. Ground-penetrating radar:wave theory and numerical simulation in lossy anisotropic media[J]. Geophysics, 1996, 61:1664-1677.
[7] Casper D A, Kung K S. Simulation of ground-penetrating radar waves in a 2-D soil model[J]. Geophysics, 1996, 61:1034-1049.
[8] Lui Q H, Fan G. Simulations of GPR in dispersive media using a frequency-dependent PSTD algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37:2317-2324.
[9] 李展辉, 黄清华, 王彦宾. 三维错格时域伪谱法在频散介质井中雷达模拟中的应用[J]. 地球物理学报, 2009, 52(7):1915-1922.
[10] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans.Antennas Propagate, 1966, 14:302-307.
[11] Umran S.Inan, Robert A.Marshall. Numerical Electromagnetics[M]. Cambridge:Cambridge University Press, 2011.
[12] Roberts R L, Daniels J. Finite-difference time domain forward modeling of GPR data[C]. Proceedings of the 5th International Conference on Ground-Penetrating Radar, Waterloo, Ontario, 1994, 185-204.
[13] Teixeira F L, Chew W C, et al. Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, conductive soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36:1928-1936.
[14] Holliger K, Bergman T. Numerical modeling of borehole georadar data[J]. Geophysics, 2002, 67:1249-1257.
[15] Georgakopoulos, S.V., Birtcher, C.R., etc.. Higher-order finite-difference schemes for electromagnetic radiation, scattering, penetration[J]. IEEE Antennas and Propagation Magazine, 2002, 44:134-142.
[16] 刘四新, 曾昭发, 徐波. 三维频散介质中地质雷达信号的FDTD数值模拟[J]. 吉林大学学报(地球科学版), 2006, 36(1):123-127.
[17] 李静, 曾昭发, 吴丰收等. 探地雷达三维高阶时域有限差分模拟研究[J]. 地球物理学报, 2010, 53(4):974-981.
[18] 冯德山, 张彬, 戴前伟等. 基于速度估计的改进型线性变换有限差分偏移在探地雷达中的应用[J]. 地球物理学报, 2011,54(5):1340-1347.
[19] Feng D S, Dai Q W. GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD[J]. NDT&E International, 2011, 44(6):495-504.
[20] Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J]. IEEE Trans. Electomagn Compat, 1981, EMC-23(4):377-382.
[21] Liao Z P, Wong H L, Yang B P, Yuan Y F. A transmitting boundary for transient wave analysis[J]. Scientia Sinica(series A), 1984, 27(10):1063-1076.
[22] Fang J Y, Mei K K. A super-absorbing boundary algorithm for numerical solving electromagnetic problems by time-domain finite-difference method[A]. IEEE AP-S International Symposium, Syrscus, NY, USA, 1988, June 6-10, 427-475.
[23] Berenger J P. A perfectly matched layer for the absorption of electromagneticwaves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
[24] Roden J, Gedney S D. Convolution PML (CPML):an efficient FDTD implementation of the CFS-PML for arbitrary media[J]. Microw. Opt. Technol. Lett, 2000, 27:334-339. 3.0.CO;2-A target="_blank">
[25] P. Fellinger, R. Marklein, K.J. Langenberg, S. Klaholz, Numerical modelling of elastic wave propagation and scattering with EFIT elasto-dynamic finite integration technique[J]. Wave Motion, 1995, 21:47-66.
[26] 冯德山, 陈承申, 王洪华. 基于混合边界条件的有限单元法正演模拟[J]. 地球物理学报, 2012, 55(11):3774-3785.
[27] 陈浩, 王秀明, 赵海波. 旋转交错网格有限差分及其完全匹配层吸收边界条件[J]. 科学通报, 2006, 51(17):1985-1994.
[28] 张鲁新, 符力耘, 裴正林. 不分裂卷积完全匹配层与旋转交错网格有限差分在孔隙弹性介质模拟中的应用[J]. 地球物理学报, 2010, 53(10):2470-2483.
[29] Taflove A, Hagness S C. Computational Electrodynamics:The Finite-Difference Time-Domain Method[M], 2nd ed. Boston. MA:Artech House. 2000.
[1] 乔海军, 李会元. 二维各向同性湍流直接数值模拟的六边形谱方法及其GPU实现和优化[J]. 数值计算与计算机应用, 2013, 34(2): 147-160.
[2] 罗振东, 高骏强, 孙萍, 安静. 交通流模型基于特征投影分解技术的外推降维有限差分格式[J]. 数值计算与计算机应用, 2013, 35(2): 159-170.
[3] 李焕荣. 土壤水流与溶质耦合运移问题的混合元-迎风广义差分法研究[J]. 数值计算与计算机应用, 2013, 35(1): 1-10.
[4] 李宏, 孙萍, 尚月强, 罗振东. 粘弹性方程全离散化有限体积元格式及数值模拟[J]. 数值计算与计算机应用, 2012, 34(4): 413-424.
[5] 吴斌, 刘志峰, 王晓宏. 油水两相流非活塞式驱替的数值算法探讨[J]. 数值计算与计算机应用, 2012, 33(4): 274-282.
[6] 李焕荣. 二维土壤水中溶质运移问题的全离散混合元法研究[J]. 数值计算与计算机应用, 2012, 33(3): 207-214.
[7] 李焕荣, 罗振东. 二维非饱和土壤水分运动问题的半离散有限体积元模拟[J]. 数值计算与计算机应用, 2011, 33(1): 57-68.
[8] 李焕荣, 罗振东. 非粘性土壤中溶质运移问题的守恒混合有限元法及其数值模拟[J]. 数值计算与计算机应用, 2010, 32(2): 183-194.
[9] 李久平,袁益让,. 三维电阻抗成像的体积元方法的数值模拟和分析[J]. 数值计算与计算机应用, 2008, 30(1): 59-74.
[10] 张辉东,王元丰,周颖. 大型水电站厂房结构流固耦联振动特性数值模拟[J]. 数值计算与计算机应用, 2007, 28(4): 267-274.
[11] 李焕荣,罗振东,李潜,. 二维粘弹性问题的广义差分法及其数值模拟[J]. 数值计算与计算机应用, 2007, 29(3): 251-262.
[12] 刘霖雯,刘超,江成顺,. 一类非线性伪抛物型方程的伪谱解法[J]. 数值计算与计算机应用, 2007, 29(1): 99-12.
[13] 李焕荣,罗振东,谢正辉,朱江,. 非饱和土壤水流问题的广义差分法及其数值模拟[J]. 数值计算与计算机应用, 2006, 28(3): 321-336.
[14] 曹建文,刘洋,孙家昶,姚继锋,潘峰. 大规模油藏数值模拟软件并行计算技术及在Beowulf系统上的应用进展[J]. 数值计算与计算机应用, 2006, 27(2): 86-95.
[15] 张红平,欧阳洁. 映射技术在液-液混合中的应用[J]. 数值计算与计算机应用, 2006, 27(1): 39-47.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10