首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 |
 数值计算与计算机应用  2015, Vol. 36 Issue (3): 215-224    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles
H-张量的判定及其应用

CRITERIA FOR H-TENSORS AND AN APPLICATION
Wang Feng, Sun Deshu
College of Science, Guizhou Minzu University, Guiyang 550025, China
 全文: PDF (268 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章

AbstractH-tensors have wide applications in the scientific computation and the applications in engineering, but it is not easy to determine whether a given tensor is an H-tensor or not in practice. In this paper, we give some practical criteria for H-tensors by constructing different positive diagonal matrices and applying some techniques of inequalities. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.

 引用本文: . H-张量的判定及其应用[J]. 数值计算与计算机应用, 2015, 36(3): 215-224. . CRITERIA FOR H-TENSORS AND AN APPLICATION[J]. Journal of Numerical Methods and Computer Applicat, 2015, 36(3): 215-224.

 [1] Chang K C,Pearson K,Zhang T.Perron-Frobenius theorem for nonnegative tensors[J].Commun.Math.Sci.,2008,6:507-520. [2] Cartwright D,Sturmfels B.The number of eigenvalues of a tensor[J].Linear Algebra Appl.,2013,438:942-952. [3] Ding Weiyang,Qi Liqun,Wei Yimin.M-tensors and nonsingularM-tensors[J].Linear Algebra Appl.,2013,439:3264-3278. [4] Kolda T G,Mayo J R.Shifted power method for computing tensor eigenpairs[J].SIAM J.Matrix Anal.Appl.,2011,32:1095-1124. [5] Liu Yongjun,Zhou Guanglu,Ibrahim N F.An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor[J].J.Comput.Appl.Math.,2010,235:286-292. [6] Lim L H.Singular values and eigenvalues of tensors:a variational approach[C].Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing,2005,1:129-132. [7] Li Chaoqian,Wang Feng,Zhao Jianxing,Zhu Yan,Li Yaotang.Criterions for the positive definiteness of real supersymmetric tensors[J].J.Comput.Appl.Math.,2014,255:1-14. [8] Ng M,Qi Liqun,Zhou Guanglu.Finding the largest eigenvalue of a nonnegative tensor[J].SIAM J.Matrix Anal.Appl.,2009,31:1090-1099. [9] Qi Liqun,Wang Yiju,Wu Ed X.D-eigenvalues of diffusion kurtosis tensors[J].J.Comput.Appl.Math.,2008,221:150-157. [10] Qi Liqun.Eigenvalues of a real supersymmetric tensor[J].J.Symbolic Comput.,2005,40:1302-1324. [11] Qi Liqun.Eigenvalues and invariants of tensors[J].J.Math.Anal.Appl.,2007,325:1363-1377. [12] Kannana M R,Mondererb N S,Bermana A.Some properties of strong H-tensors and general H-tensors[J].Linear Algebra Appl.,2015,476:42-55. [13] Yang Yuning,Yang Qingzhi.Further results for Perron-Frobenius Theorem for nonnegative tensors[J].SIAM.J.Matrix Anal.Appl.,2010,31:2517-2530. [14] Wang Yiju,Qi Liqun,Zhang Xinzhen.A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor[J].Numerical Linear Algebra Appl.,2009,16:589-601. [15] Zhang Liping,Qi Liqun,Zhou Guanglu.M-tensors and some applications[J].SIAM J.Matrix Anal.Appl.,2014,35:437-542.
 [1] 张晋芳, 杨晋, 任艳萍. 非奇异H-矩阵的新判定[J]. 数值计算与计算机应用, 2013, 34(3): 161-166. [2] 周伟伟, 徐仲, 陆全, 尹军茹. 非奇H-矩阵细分迭代判定准则[J]. 数值计算与计算机应用, 2011, 32(4): 293-300. [3] 王健, 徐仲, 陆全. 判定广义严格对角占优矩阵的一组新条件[J]. 数值计算与计算机应用, 2011, 33(3): 225-232. [4] 雷小娜, 徐仲, 陆全, 安晓红. 广义严格对角占优矩阵的一组新判据[J]. 数值计算与计算机应用, 2011, 32(1): 49-56. [5] 宋海洲, 田朝薇, 徐强. 一个求大规模非负不可约稀疏矩阵的谱半径及特征向量的新算法[J]. 数值计算与计算机应用, 2010, 32(1): 37-46. [6] 庹清,朱砾,刘建州,. 一类非奇异H-矩阵判定的新条件[J]. 数值计算与计算机应用, 2008, 30(2): 177-182. [7] 段复建,张可村. 不可约M-矩阵最小特征值的新算法[J]. 数值计算与计算机应用, 2006, 27(2): 139-144. [8] 黄廷祝,申淑谦,章伟. 非负不可约矩阵Perron根的上界序列[J]. 数值计算与计算机应用, 2005, 27(3): 285-290. [9] 干泰彬,黄廷祝. 非奇异H矩阵的实用充分条件[J]. 数值计算与计算机应用, 2004, 26(1): 109-116.
 Copyright © 2008 数值计算与计算机应用 版权所有 中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部 北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn京ICP备05002806号-10