数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2015, Vol. 36 Issue (2): 100-112    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
hp自适应有限元计算中一种新的自适应策略
刘辉, 崔涛, 冷伟
LSEC, 中国科学院数学与系统科学研究院, 计算数学研究所, 北京 100190
A NEW hp-ADAPTIVE STRATEGY FOR hp-ADAPTIVE FINITE ELEMENT METHODS
Liu Hui, Cui Tao, Leng Wei
LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF (411 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文对hp自适应策略进行了研究, 在前人提出的几种基于误差下降预测的~hp 自适应策略的基础上给出了一个新的 hp 自适应加密策略. 该策略适用于二维三角形、四边形和三维四面体、六面体等不同类型的单元, 适用于正则加密、二分加密等不同自适应加密方式. 数值实验表明, 该策略可以达到最优的误差指数下降阶, 并在数值解的精度和计算效率上优于文献中的一些策略. 该部分工作已集成到自适应有限元计算框架 PHG 的 hp 自适应模块.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词自适应有限元   hp自适应策略   并行计算     
Abstract: We studied existing hp adaptive strategies in the literature, and proposed a new strategy for adaptive finite element method. Numerical experiments show that our new strategy achieves exponential convergence, and is superior, in both precision of the solutions and computation time, to the strategy compared. This part of the work also serves to validate the hp adaptivity module of PHG.
Key wordsadaptive finite element methods   hp refinement strategy   parallel computing   
收稿日期: 2014-10-15;
基金资助:

本文由国家973项目(2011CB309703),国家863项目(2012AA01A309),国家自然科学基金(11171334,11321061,11101417)和中国科学院国家数学与交叉科学中心资助.

引用本文:   
. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112.
. A NEW hp-ADAPTIVE STRATEGY FOR hp-ADAPTIVE FINITE ELEMENT METHODS[J]. Journal of Numerical Methods and Computer Applicat, 2015, 36(2): 100-112.
 
[1] Zhang L. A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection[J]. Numer. Math.: Theory, Methods and Applications, 2009, (2): 65-89.
[2] Liu H, Zhang L. Parallel implementation of commonly used marking strategies in the adaptive finite element toolbox PHG[J]. Journal on Numerical Methods and Computer Applications, 2009, 30(4): 315-312.
[3] Liu H. Dynamic load balancing on adaptive unstructured meshes, High Performance Computing and Communications, 10th IEEE International Conference on 2008, (0): 870-875.
[4] Martin ?itka. hp-FEM for large-scale singular 3D problems. MSc Thesis, Department of Mathematical Sciences, University of Texas At EL PASO, May 2006.
[5] Svatava Vyvialová. Analysis and optimation of a class of hierarchic finite element methods. MSc Thesis, Department of Mathematical Sciences, University of Texas At EL PASO, May 2006.
[6] Babuska I and Rheinboldt W C. Adaptive approaches and reliability estimates in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1979, (17/18): 519-540.
[7] Zhienkiewicz O C. Achievements and some unsolved problems of the finite element method[J]. International Journal for Numerical Methods in Engineering, 2000, (47): 9-28.
[8] Oden J K and Demkowicz L. Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics. In Accuracy Estimates and Adaptive Refinements in Finite Element Computations (ASME), pages 1987, 1-43.
[9] Ainsworth M and Oden J T. A posteriori error estimation in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1997, (142): 1-88.
[10] Scaron;olín P, Segeth K and Dole?el I. Higher-Order Finite Element Methods. Chapman & Hall/CRC Press, 2003.
[11] Randolph E Bank. Hierarchical Bases and the Finite Element Method, Acta Numerica, 1997.
[12] Adjerid S, Aiffa M and Flaherty J E. Hierarchical finite element bases for triangular and tetrahedral elements[J]. Computer Methods in Applied Mechanics and Engineering, volume 2001, 190(22-23): 2925-2941.
[13] Liu H, Yu S, Chen Z, Hsieh B and Shao L. Parallel Preconditioners for Reservoir Simulation on GPU. SPE-152811, SPE Latin America and Caribbean Petroleum Engineering Conference, 2012.
[14] Spencer J Sherwin and George Em Karniadakis. A new triangular and tetrahedral basis for high-order hp finite element methods[J]. International Journal for Numerical Methods in Engineering, 1995, 38(22): 3775-3802
[15] Mitchell W F and McClain M A. A survey of hp-adaptive strategies for elliptic partial differential equations. Accepted by Annals of the European Academy of Sciences, 2010.
[16] Ainsworth M and Senior B. hp-finite element procedures on non-uniform geometric meshes: adaptivity and constrained approximation[J]. Grid Generation and Adaptive Algorithms, 1999, (113): 1-28.
[17] Süli E, Houston P and Schwab Ch. hp-finite element methods for hyperbolic problems. The Mathematics of Finite Elements and Applications X. MAFELAP, Elsevier, 2000, 143-162.
[18] Liu H, Yu S, Chen Z, Hsieh B and Shao L. Sparse Matrix-Vector Multiplication on NVIDIA GPU[J]. International Journal of Numerical Analysis & Modeling, Series B, 2012, 3(2): 185-191.
[19] Eibner T and Melenk J M. An adaptive strategy for hp-FEM based on testing for analyticity[J]. Compute Mech, 2007, (39): 575-595.
[20] Heuveline V and Rannacher R. Duality-based adaptivity in the hp-finite element method[J]. J. Numer. Math, 2003, (11): 1-18.
[21] Ainsworth M and Senior B. An adaptive refinement strategy for hp-finite element computation[J]. Applied Numerical Mathematics, 1998, (26): 165-178.
[22] Babuška I and Suri M. The optimal convergence rate of the p-version of the finite element method[J]. SIAM Journal on Numerical Analysis, 1987, (24): 750-776.
[23] Babuška I, Andersson B, Guo B, Melenk J M and Oh H S. Finite element method for solving problems with singular solutions[J]. Journal of Computational and Applied Mathematics, 1996, (1): 51-70.
[24] Guo B Q and Babuška I. The h-p version of the finite element method. Part 1. The basic approximation results[J]. Comput. Mech, 1986, (1): 21-41.
[25] Guo B Q and Babuška I. The h-p version of the finite element method. Part 2. General results and applications[J]. Comput. Mech, 1986, (1): 203-226.
[26] Gui W and Babuška I. The h, p and h-p versions of the finite element method in 1 Dimension. Part III. The adaptive h-p version[J]. Numer. Math, 1986, (49): 659-683.
[27] Houston P and Süli E. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations[J]. Computer Methods in Applied Mechanics and Engineering, 2005, (194): 229-243.
[28] Bernardi C, Fiétier N and Owens R G. An error indicator for mortar element solutions to the Stokes problem[J]. IMA J. Num. Anal., 2001, (21): 857-886.
[29] Valenciano J and Owens R G. An h-p adaptive spectral element method for Stokes flow[J]. Appl. Numer. Math., 2000, (33): 365-371.
[30] Adjerid S, Aiffa M and Flaherty J E. Computational methods for singularly perturbed systems. in: J.Cronin, R.E. O'Malley (Eds.), Singular Perturbation Concepts of Differential Equations, AMS Providence, 1998.
[31] Oden J T and Patra A. A parallel adaptive strategy for hp finite elements[J]. Comput. Methods. Appl. Mech. Engrg., 1995, (121): 449-470.
[32] Oden J T, Patra A and Feng Y. An hp adaptive strategy, Adaptive Multilevel and Hierarchical Computational Strategies, 1992, (157): 23-46.
[33] Mavriplis C. Adaptive mesh strategies for the spectral element method[J]. Comput. Methods. Appl. Mech. Engrg., 1994, (116): 77-86.
[34] Rachowicz W, Demkowicz L and Oden J T. Toward a universal h-p adaptive finite element strategy, Part 3. Design of h-p meshes[J]. Comput. Methods. Appl. Mech. Engrg., 1989, (77): 181-212.
[35] Scaron;olín P, ?ervený J and Dole?el I. Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM[J]. Math. Comput. Simulation, 2008, (77): 117-132.
[36] Liu H, Chen Z and Yang B, Accelerating preconditioned iterative linear solver on GPU[J]. International Journal of Numerical Analysis and Modelling: Series B, 2014, 5(1-2), 136-146.
[37] Chen Z, Liu H, and Yang B. Accelerating iterative linear solvers using multiple graphical processing units[J]. International Journal of Computer Mathematics, to appear.
[38] Zumbusch G W. Simultanous h-p Adaption in Multilevel Finite Elements, Zuse Institute Berlin, TR-95-14, 1995.
[1] 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 数值计算与计算机应用, 2015, 36(3): 166-184.
[2] 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80.
[3] 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 数值计算与计算机应用, 2011, 32(3): 183-195.
[4] 吴树林, 王志勇, 黄乘明. Parareal 算法的均方稳定性分析[J]. 数值计算与计算机应用, 2011, 33(2): 113-124.
[5] 刘辉, 张林波. 自适应有限元常用标记策略及其在PHG中的并行实现[J]. 数值计算与计算机应用, 2009, 30(4): 315-320.
[6] 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320.
[7] 姜金荣,迟学斌,陆忠华,刘洪利. 在MM5中实现IKAWA参数自适应选择[J]. 数值计算与计算机应用, 2007, 28(3): 215-220.
[8] 李长峰,袁益让,. 三维两相渗流驱动问题迎风区域分裂显隐差分法[J]. 数值计算与计算机应用, 2007, 29(2): 113-136.
[9] 李永刚,欧阳洁,肖曼玉. 基于时间分解求解时间依赖问题的并行算法研究[J]. 数值计算与计算机应用, 2007, 28(1): 27-37.
[10] 余胜生,文元桥,周敬利. 隧道算法的分布式并行计算模型[J]. 数值计算与计算机应用, 2006, 27(4): 299-306.
[11] 曹建文,刘洋,孙家昶,姚继锋,潘峰. 大规模油藏数值模拟软件并行计算技术及在Beowulf系统上的应用进展[J]. 数值计算与计算机应用, 2006, 27(2): 86-95.
[12] 吕桂霞,马富明. 二维热传导方程有限差分区域分解算法[J]. 数值计算与计算机应用, 2006, 27(2): 96-105.
[13] 盛志强,刘兴平,崔霞. 对抛物方程使用新显格式的区域分解算法[J]. 数值计算与计算机应用, 2005, 26(4): 249-261.
[14] 徐小文,莫则尧. 一种新的并行代数多重网格粗化算法[J]. 数值计算与计算机应用, 2005, 27(3): 325-336.
[15] 王文洽. 色散方程的一类新的并行交替分段隐格式[J]. 数值计算与计算机应用, 2005, 27(2): 129-140.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10