数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2015, Vol. 36 Issue (1): 1-11    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于幂级数展开的基本初等函数的高精度快速计算
商妮娜, 秦惠增
山东理工大学理学院, 山东淄博 255049
FAST CALCULATION AND HIGH PRECISION OF BASIC ELEMENTARY FUNCTION BASED ON POWER SERIES EXPANSIONS
Shang Nina, Qin Huizeng
Institute of Applied Mathematics, Shandong University of Technology Zibo 255049, Shandong, China
 全文: PDF (375 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文考虑了基本初等函数的高精度快速算法问题. 首先讨论与Bernoulli 数B2n或Euler数E2n相关的基本初等函数(如tanx、secx、tanhx等)的幂级数展开问题, 并给出相应的幂级数展开式的快速算法. 然后,对于基本初等函数、双曲函数和反双曲函数, 在复数域上给出基于幂级数展开的任意精度的快速算法. 由于指数、对数函数可以用幂级数表示, 本文设计的算法适用于所有初等函数的计算. 算法的特点是编程简单、容易实现, 可以自成计算初等函数的体系.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词高精度快速计算   基本初等函数   Bernoulli数   Euler数     
Abstract: In this paper, we consider a fast and high-precision algorithm of the basic elementary functions. Firstly, we discuss the power series expansion of functions which are related to the Bernoulli number B2n or Euler number E2n, such as tan x, sec x, tanh x and so on, and study the corresponding fast computation. For the basic elementary functions, hyperbolic functions and inverse hyperbolic functions, we derive a fast and arbitrarily accurate algorithm based on the power series expansion in the complex domain. The algorithm proposed in this paper is suitable for all elementary functions due to that the exponential and logarithm functions can be expressed by the power series. The feature of this algorithm is that it can be easily coded and it is self-contained for the computation of the elementary functions.
Key wordsFast and arbitrary accuracy algorithm   basic elementary functions   Bernoulli number   Euler number   
收稿日期: 2013-04-05;
基金资助:

国家自然科学基金(61379009)资助项目.

引用本文:   
. 基于幂级数展开的基本初等函数的高精度快速计算[J]. 数值计算与计算机应用, 2015, 36(1): 1-11.
. FAST CALCULATION AND HIGH PRECISION OF BASIC ELEMENTARY FUNCTION BASED ON POWER SERIES EXPANSIONS[J]. Journal of Numerical Methods and Computer Applicat, 2015, 36(1): 1-11.
 
[1] Brent R. The Complexity of Multiple-Precision Arithmetic, In Complexity of Computational Problem Solving, R. Anderssen and R. Brent, E.U. of Queensland Press, Brisbane, 1976, 126-165.
[2] Brent R. Fast algorithms for high-precision computation of elementary functions (invited talk), Seventh Conference on Real Numbers and Computers (RNC7). Nancy. France. 10-12 July 2006, 7-8(extended abstract).
[3] Brent R. A Fortran Multiple-Precision Arithmetic Package[J]. ACM Trans. Math. Software, 1978, 4: 57-70.
[4] Reyna J, Brent R and Lune J. A note on the real part of the Riemann zeta-function. in Herman J.J.te Riele Liber Amicorum. CWI, Amsterdam, Dec. 2011. arXiv: 1112.4910v1.
[5] Ziv A and Israel I, H Israel. Fast evaluation of elementary mathematical functions with correctly rounded last bit[J]. ACM Transactions on Mathematical Software, 1991, 17(3): 410-423.
[6] Paszkowski S. Fast Convergent Quasipower Series for Some Elementary and Special Functions[j]. Computers Math. Applic. 1997, 33(1-2): 181-191.
[7] Brent R. Fast Multiple-Precision Evaluation of Elementary Functions[J]. Journal of the Aaaociation for Computing Machmery, 1976, 23(2).
[8] Tsumura H. An elementary proof of Euler's formula for, Amer. Math. Monthly, 2004, 111: 430-431
[9] Deeba E and Rodriguez D. Stirling's Series and Bernoulli Numbers[J]. Amer. Math. Monthly, 1991, 98: 423-426.
[10] Kaneko M. A Recurrence Formula for the Bernoulli Numbers[J]. Proc. Japan Acad., 1995, 71, Ser. A: 192-193.
[11] Zèkir A, Bencherif F. A new recursion relationship for Bernoulli Numbers[J]. Annales Mathematicae et Informaticae, 2011, 38: 123-126.
[12] Howard F. Applications of a Recurrence for the Bernoulli Numbers[J]. J. Number Theory, 1995, 52: 157-172.
[13] Tuenter H. The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers[J]. Journal of Number Theory, 2006, 117: 376-386.
[14] Gradshteyn I and Ryzhik I. Table of Integrals Series and Products, Seventh Ediyion, Academic Press is an imprint of Elsevier, 1043-1044.
[15] Qin H, Shang N and Li A. Some identities on the Hurwitz zeta function and the extended Euler sums. Version of record first published: 05 Oct 2012.
[16] Kim T. Euler Numbers and Polynomials Associated with Zeta Functions. Abstract and Applied Analysis, Volume 2008 (2008), Article ID 581582, 11 pages.
[17] Adamchik V. On the Hurwitz function for rational arguments[J]. Applied Mathematics and Computation, 2007, 187: 3-12.
没有找到本文相关文献
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10