数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2014, Vol. 35 Issue (4): 255-268    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
随机颗粒复合材料模型生成与网格划分算法
崔文凯1,2, 冯仰德1, 纪国良2,3, 李婵怡1,2
1. 中国科学院计算机网络信息中心超级计算中心, 北京, 100190;
2. 中国科学院大学, 北京, 100190;
3. 中国科学院自动化研究所, 北京, 100190
THE GENERATION OF RANDOM PARTICLE COMPOSITE UNIT CELL MODEL AND MESHING
Cui Wenkai1,2, Feng Yangde1, Ji Guoliang2,3, Li Chanyi1,2
1. Supercomputing Center, Computer Network Information Center, CAS, Beijing, 100190, China;
2. University of Chinese Academy of Sciences, Beijing, 100190, China;
3. Institute of Automation Chinese Academy of Sciences, Beijing, 100190, China
 全文: PDF (989 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出了一种针对多尺度复合材料二、三维单胞模型生成和网格划分算法.单胞模型生成使用紧凑算法和舍选算法. 二维方法生成的椭圆数量大, 而且随机性好; 三维生成的椭球可以达到很高的体积分数. 使用自适应折线逼近算法用多边形逼近椭圆、多面体逼近椭球, 该方法能快速生成较好的质量网格. 试验证明了该算法的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词多尺度复合材料   单胞模型   自适应折线逼近   网格划分     
Abstract: This paper proposes an algorithm for the generation and meshing of multi-scale composites 2D 3D unit cell model. The generation of unit cell model uses compact and reject algorithm, we use ellipse ellipsoid to represent its internal reinforcing particles. This algorithm could generate a large number of ellipses and high volume ratio of the unit cell with good randomness. When meshing, first we use adaptive line approximation algorithm that uses polygon to approximate the ellipse and polyhedron to approximate the ellipsoid. The Numerical experiments show that this algorithm generates high quality meshes in a very fast speed and the validity of the method.
Key wordsMulti-scale composites   Unit cell model   Adaptive polyline approximation   Mesh generation   
收稿日期: 2013-11-01;
基金资助:

国家基础研究计划(2010CB832702)和国家自然科学基金(11301506、10972215)资助.

引用本文:   
. 随机颗粒复合材料模型生成与网格划分算法[J]. 数值计算与计算机应用, 2014, 35(4): 255-268.
. THE GENERATION OF RANDOM PARTICLE COMPOSITE UNIT CELL MODEL AND MESHING[J]. Journal of Numerical Methods and Computer Applicat, 2014, 35(4): 255-268.
 
[1] Sanchez-Palencia E. Boundary layers and edge effects in composites, Sanchez-Palencia E and ZaouiA. Homogenization Techniques for Composite Media, Lecture Notes in Physics, Berlin: Springer,1987, 272: 121-192.
[2] Engquist W E B. The heterogeneous multiscale methods[J]. Communications in MathematicalSciences, 2003, 1: 87-132.
[3] Ming P B, Yue X Y. Numerical methods for multiscale elliptic problems[J]. Journal of ComputationalPhysics, 2006, 214(1): 421-445.
[4] Yu Y, Cui J Z and Han F. An effective computer generation method for the composites with randomdistribution of large numbers of heterogeneous grains[J]. Composites Science and Technology,2008, 68: 2543-2550.
[5] 于艳, 崔俊芝, 韩非.颗粒非一致随机分布复合材料结构的热传导性能预测的统计的二阶双尺度分析方法[J].材料工程学报, 2009, 增刊.
[6] 于艳, 崔俊芝, 聂玉峰. 一类周期多孔固体材料热传导性能计算的孔洞填充方法[J].数值计算与计算机应用, 2009, 30: 225-240. 浏览
[7] 李友云, 崔俊芝.具有大量椭圆颗粒/孔洞随机分布区域的计算机模拟及其改进三角形自动网格生成算法[J]. 计算力学学报,2004, 21(5): 540-545.
[8] 李友云, 何长洲.大量椭球颗粒随机分布三维区域的模拟及其四面体网格快速生成算法计算力学学报[J].2008, 25(3): 319-325.
[9] Weng G J. Explicit evaluation of Willis' bounds with ellipsoidal inclusions[J]. International Journalof Engineering Science, 1992, 30: 83-92.
[10] Torquato S. Random heterogeneous media: microstructure and improved bounds on effectiveproperties[J]. Applied Mechanics Reviews, 1991, 44(2): 37-76.
[11] Torquato S. Random heterogeneous materials: Microstructure and macroscopic properties. NewYork: Springer, 2002.
[12] Babuska I. Solution of interface problems by homogenizatio[J]. Parts ~, , Siam Journal onMathematical Analysis, 1976, 7: 603-645.
[13] Zheng Jianjun, Zhou Xinzhu, Liu Yanqing. Simulation of 2-D distribution of concrete aggregatesand its application [J]. Journal of Hydraulic Engineering, 2003, 7: 80-84.
[14] Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and RelatedProblems[J] Proceedings of the Royal Society, London, Series A, 1957, 241: 376-396.
[15] Esheby J D. The Elastic Field Outside an Ellipsoidal Inclusion[J]. Series A, 1957, 240: 367-396.
[16] Yu Yan. Second-order two-scale method for predicting heat-conduction performance of compositematerials with randomicity[D]. Xian: Northwestern Polytechnical University, 2010.
没有找到本文相关文献
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10