数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2013, Vol. 34 Issue (1): 20-30    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于辛格式的谱元法及其在横向各向同性介质波场模拟中的应用
汪文帅1,2, 李小凡3
1. 宁夏大学数学计算机学院, 银川 750021;
2. 中国科学院地质与地球物理研究所, 北京 100029;
3. 中国科学院地质与地球物理研究所, 北京 100029
THE SEM BASED ON SYMPLECTICAL SCHEMES AND ITS APPLICATION IN MODELING THE WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC MEDIA
Wang Wenshuai1,2, Li Xiaofan3
1. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, China;
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF (644 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于分部的Runge-Kutta离散形式, 给出了一种新的三阶辛积分算法, 数值试验表明,长时程计算时该算法具有好的控制误差累积的能力; 与有限差分法进行空间域离散相结合, 通过数值试验进一步说明算法的有效性. 注意到位移波动方程通过谱元离散后的微分方程组, 完全符合新推导的三阶辛算法离散所需形式, 因此将该三阶辛算法与谱元法结合具有很好的优势, 并通过对横向各向同性介质弹性波场的模拟, 结果显示不但成功模拟了波的传播特性, 而且相对于传统算法, 优势明显.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词谱元法   辛格式   横向各向同性介质     
Abstract: A new three-stage third-order solution (NTSTO) to symplectical schemes is obtained based on partitioned Runge-Kutta form, several numerical results show that, the scheme is excellent in suppressing residual increase. Combining finite difference(FD) in spatial discretization with the new symplectical scheme in temporal discretization, the further numerical experiments are provided and the results also show that the method is effective. The form is completely consistent with the requirements of the symplectical scheme in time domain when the elastic wave equations are discretized using spectral element methods(SEM) in space domain. So it is natural to solve the elastic wave equations using the symplectical scheme combined with the spectral element methods (NTSTO-SEM). Finally, the algorithm is employed to simulate wave propagation in transversely isotropic media, the results show that the performance is good and superior to classical algorithms, such as Newmark method combined with SEM (Newmark-SEM) and Runge-Kutta method of third-order combined with SEM (RK3-SEM).
Key wordsSpectral element method   Symplectical schemes   transversely isotropic media   
收稿日期: 2011-12-01;
基金资助:

国家自然科学基金 (41174047, 40874024, 41204041)和国家重点基础研究发展计划"973"计划(2007CB209603).

引用本文:   
. 基于辛格式的谱元法及其在横向各向同性介质波场模拟中的应用[J]. 数值计算与计算机应用, 2013, 34(1): 20-30.
. THE SEM BASED ON SYMPLECTICAL SCHEMES AND ITS APPLICATION IN MODELING THE WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC MEDIA[J]. Journal of Numerical Methods and Computer Applicat, 2013, 34(1): 20-30.
 
[1] Hairer E, Lubich C, Wanner G. Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations[M]. Berlin: Springer-Verlag, 2006.
[2] Forest E, Ruth R D. Fourth-order symplectic integration[J]. Physica. D, 1990, 43(1): 105-117.
[3] SunW,Wu X and Huang G Q. Symplectic integrators with potential derivatives to third order[J]. Research in Astron. Astrophys. 2011, 11(3), 353-368.
[4] LI R, WU X. Two new fourth-order three-stage symplectic integrators[J]. Chin. Phys. Lett. 2011, 28(7): 070201.
[5] Li X F, Li Y Q, Zhang M G, etal. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method[J]. Bulletin of the seismological society of America, 2011, 101(4): 1701-1718.
[6] 李一琼, 李小凡, 朱童. 基于辛格式奇异核褶积微分算子的地震标量波场模拟[J].地球物理学报, 2011, 54(7): 1827-1834.
[7] 邢誉峰,冯伟. 李级数算法和显式辛算法的相位分析[J]. 计算力学学报, 2009, 26(2): 167-171.
[8] Iwatsu R. Two new solutions to the third-order symplectic integration method[J]. Phys. Lett. A. 2009, 373(34): 3056-3060.
[9] Ruth R D. A canonical integration technique[J]. IEEE Transactions on Nuclear Science, 1983, 30(4): 2669-2671.
[10] Zhong W X. Analytical structural mechanics and finite element. Journal of Dynamics and Control( in Chinese), 2004, 2(4): 1-8.
[11] Chaljub E, Komatitsch D, etal. Spectral-element analysis in seismology[J]. Advances in Geophysics, 2007, 48: 365-419.
[12] Van Der Houwen P J, Sommeijer B P. Explict Runge-Kutta (-Nystrˇom) methods with reduced phase errors for computing oscillating solutions[J]. SIAM J. Numer. Anal. 1987, 24(3): 595-617.
[13] Ablowitz M J, Kruskal M and Ladik F. Solitary wave collisions[J]. SIMA J. Appl. Math. 1979, 36(3): 428-437.
[14] Shen J, Tang T. Spectral and high-order methods with applications[M]. Beijin:Science Press, 2006.
[15] Chaljub E, Valette B. Spectral element modelling of threedimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core[J]. Geophys. J. Int., 2004, 158(1): 131-141.
[16] Komatitsch D, Ritsema J, Tromp J. The spectral-element method, Beowulf computing, and global seismology[J]. Science, 2002, 298(5599): 1737-1742.
[17] Komatitsch D, Barnes C, Tromp J. Simulation of anisotropic wave propagation based upon a spectral element method[J]. Geophysics, 2000, 65(4): 1251-1260.
[18] Komatitsch D, Vilotte J P. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull. Seismol. Soc. Am., 1998, 88(2): 368-392.
[19] Newmark N M. A method of computation for structural dynamics[J]. ASCE Journal of the Engineering Mechanics Division, 1959, 67-94.
[20] Kane C, Marsden J E, Ortiz M, etal. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems[J]. International Journal for Numerical Methods in Engineering, 2000, 49(10): 1295-1325. 3.0.CO;2-W target="_blank">
[21] Carcione J M, Kosloff D, Kosloff R. Wave-propagation simulation in an elastic anisotropic( transversely isotropic)solid[J]. Mech.appl.Math., 1988, 41(3): 320-345.
[22] Stacey R. Improved transparent boundary formulations for the elastic-wave equation[J]. Bull. Seism. Soc. Am. 1988, 78(6): 2089-2097.
[23] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966.
[24] 李磊, 郝重涛. 横向各向同性介质和斜方介质各向异性参数的约束条件[J]. 地球物理学报, 2011, 54(11): 2819-28.
[1] 朱华君, 陈亚铭, 宋松和, 唐贻发. 二维非线性Schrödinger方程的辛与多辛格式[J]. 数值计算与计算机应用, 2010, 32(3): 315-326.
[2] 胡莹莹, 王雨顺, 王会平. RLW方程的一个新的显式多辛格式[J]. 数值计算与计算机应用, 2009, 31(4): 349-362.
[3] 王雨顺,秦孟兆. 变分与无限维系统的高精度辛格式[J]. 数值计算与计算机应用, 2002, 24(4): 431-436.
[4] 陈旻. 欧拉方程的Velicity表示和辛积分[J]. 数值计算与计算机应用, 1999, 21(2): 171-180.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10