 首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 |
 数值计算与计算机应用 2013, Vol. 34 Issue (1): 9-19    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles AN ITERATIVE ALGORITHM FOR THE GENERALIZED REFLEXIVE SOLUTION OF THE MULTI-MATRIX-VARIABLE LINEAR MATRIX EQUATION
Wang Jiao, Zhang Kaiyuan, Li Shulian
Dept. of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
 全文: PDF (387 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章

Abstract： Based on the method of the modified conjugate gradient to the linear matrix equation over constrained matrices, and by modifying the construction of some matrices, an iterative algorithm is presented to find the generalized reflexive solution of the matrix equation which is a special type with several matrix variables. The convergence of the iterative algorithm is proved. And the problem of the optimal approximation to the given matrix is solved in the generalized reflexive solution set of this matrix equation. When this matrix equation is consistent, its generalized reflexive solution can be obtained within finite iterative steps. And its least-norm generalized reflexive solution can be got by choosing the special initial matrices. The numerical example shows that the iterative algorithm is quite efficient.

 引用本文: . 多矩阵变量线性矩阵方程的广义自反解的迭代算法[J]. 数值计算与计算机应用, 2013, 34(1): 9-19. . AN ITERATIVE ALGORITHM FOR THE GENERALIZED REFLEXIVE SOLUTION OF THE MULTI-MATRIX-VARIABLE LINEAR MATRIX EQUATION[J]. Journal of Numerical Methods and Computer Applicat, 2013, 34(1): 9-19.

  Braden H W. The equationsATX+XTA=B[J]. SIAM. J. Matrix Anal. & Appl., 1998, 295-302.  Fujioka H, Hara S. State covariance assignment problem with measurement noise: a unified approach based on a symmetric matrix equation[J]. Linear Algebra Appl., 1994, 203/204: 579-605.  袁永新, 戴华. 矩阵方程ATXB+BTXTA=D的极小范数最小二乘解[J]. 高等学校计算数学学报, 2005, 27(3): 232-238. Dehghan Mehdi, Hajarian Masoud. Two algorithms for finding the Hermitian reflexive and skew- Hermitian solutions of Sylvester matrix equations[J]. Appl. Math. Lett, 2011, 24: 444-449. Wang Xiang, Wu Wuhua. A finite Iterative algorithm for Solving the generalized (P, Q)-reflexive solution of the linear systems of matrix equations[J]. Mathematical and Computer Modelling, 2011, 54: 2117-2131. 袁飞, 张凯院. 矩阵方程AXB+CXTD=F的自反最小二乘解的迭代算法[J]. 数值计算与计算机应用, 2009, 30(3): 195-201. 浏览  郑凤芹, 张凯院. 求多变量线性矩阵方程组自反解的迭代算法[J]. 数值计算与计算机应用, 2010, 31(1): 39-54. 浏览  刘晓敏, 张凯院. 双变量LMEs一种异类约束最小二乘解的MCG算法[J].应用数学学报, 2011, 34(5): 938-948.  田小红, 张凯院. 求线性矩阵方程双对称最小二乘解的变形共轭梯度法[J]. 工程数学学报, 2010, 27(5): 827-832.  张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2006,105-113.
  段雪峰, Maher Berzig. 关于“矩阵方程X-A*XqA=I(0
 Copyright © 2008 数值计算与计算机应用 版权所有 中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部 北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn京ICP备05002806号-10