数值计算与计算机应用
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  在线办公 | 
数值计算与计算机应用  2011, Vol. 32 Issue (1): 64-71    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
矩形脊波导损耗特性的有限元研究
王磊1, 陈小强1, 刘海川2, 崔江涵3
1. 兰州交通大学自动化与电气工程学院, 兰州 730070;
2. 兰州交通大学电子信息工程学院, 兰州 730070;
3. 烟台大学光电学院, 山东烟台 264000
STUDY OF LOSS CHARACTERISTIC OF RECTANGULAR RIDGED WAVEGUIDE BY FINITE ELEMENT METHOD
Wang Lei1, Chen Xiaoqiang1, Liu Haichuan2, Cui Jianghan3
1. School of Automation and Electrical Engineering Lanzhoujiaotong University, Gansu Lanzhou 730070, China;
2. School of Electronic and Information Engineering Lanzhoujiaotong University, Gansu Lanzhou 730070, China;
3. School of Optoelectronic Yantai University, Shandong Yantai 264000, China
 全文: PDF (916 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 

损耗特性是脊波导的重要特性之一, 衰减常数和功率容量是脊波导的重要参数.本文运用有限元法分析计算了矩形单脊和对称双脊波导在TE模式下的衰减常数和功率容量,并且给出了工作频率和截止波长变化时不同尺寸下脊波导的计算数据和变化曲线. 结果表明,无论是矩形单脊还是双脊波导, 归一化衰减常数都随工作频率的增大而递减, 而标准衰减常数都随着归一化截止波长的增大单调递增. 功率容量随归一化截止波长的增大单调递减, 且随脊距d和脊宽s的增大而增大. 由计算数据可以看出, 单脊和双脊波导相比具有比较好的损耗特性. 数值结果将丰富现存的脊波导数据, 并且有助于脊波导的设计和在实际中的应用.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词脊波导   有限元法   衰减常数   功率容量     
Abstract

Loss characteristic is one of the important characteristics of ridged waveguide, so attenuation constant and power handling capability are major parameters. Attenuation constant and power handling capability are analyzed and calculated using the finite element method in single and double rectangular ridged waveguides of TE mode. Calculating data and curves in different structure dimensions of ridged waveguides when working frequency and cutoff wavelength change are also presented in this paper. The results show that in both single and double rectangular ridged waveguides, normalized attenuation constant decreases as the frequency increases, and standardized attenuation constant monotonously increases as normalized cutoff wavelength increases. Power handling capability monotonously decreases as normalized cutoff wavelength increases, but it increases as the distance and the width of ridges increases. It can be obtained from the calculating data that single ridged waveguides have better loss characteristic compared with double ridged waveguides. Numerical results provide an extension to the existing data of ridges waveguides and considered to be helpful in design and practical applications.

Key wordsridged waveguide   FEM (Finite element method)   attenuation   power handling   
收稿日期: 2010-06-24;
基金资助:

甘肃省教育厅硕导(0804-12).

引用本文:   
. 矩形脊波导损耗特性的有限元研究[J]. 数值计算与计算机应用, 2011, 32(1): 64-71.
. STUDY OF LOSS CHARACTERISTIC OF RECTANGULAR RIDGED WAVEGUIDE BY FINITE ELEMENT METHOD[J]. Journal of Numerical Methods and Computer Applicat, 2011, 32(1): 64-71.
 
[1] Weimin Sun and Constantine A.Balanis. MFIE analysis and design of ridged waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(11): 1965-1971.
[2] SB Cohn. Properties of ridge waveguide[J]. Proc IRE, 1947, 35: 783-788.
[3] Weimin Sun and Constantine A.Balanis. MFIE analysis and design of ridged waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(11): 1965-1971.
[4] Yu Rong, Kawthar A.Zaki. Characteristics of Generalized Rectangular and Circular Ridge Waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(2): 258-265.
[5] Yang Chun-yan, Yao Bin, Zheng Qin-hong. Analysis of attenuation coefficient and cutoff character in waveguide by finite difference method[J]. Journal of Yunnan Normal University, 2005, 25(3): 35-40. in Chinese.
[6] Wang Ping. The Parameter Calculation for Ridge Waveguide[J]. Fire Control radar Technology, 2004, 33: 50-55.
[7] 金建铭.电磁场有限方法[M]. 西安: 西安电子科技大学出版社, 2001, 137-139.
[8] 曹世昌.电磁场的数值计算和微波的计算机辅助设计[M]. 北京: 电子工业出版社, 1989, 27-29.
[9] Hopfer S. The design of ridged waveguide[J]. IRE Trans. Microwave Theory Tech, 1955, MTT-3(10): 20-29.
[1] 范馨月, 杨一都. 非自共轭椭圆特征值问题有限元插值校正[J]. 数值计算与计算机应用, 2011, 33(1): 15-24.
[2] 何斯日古楞, 李宏. 带广义边界条件的四阶抛物型方程的混合间断时空有限元法[J]. 数值计算与计算机应用, 2009, 31(2): 167-178.
[3] 董巧丽, 曹礼群, 翟方曼. 三维复合介质波动方程多尺度辛几何算法[J]. 数值计算与计算机应用, 2008, 30(4): 437-448.
[4] 骆艳,冯民富,. Stokes方程的压力梯度局部投影间断有限元法[J]. 数值计算与计算机应用, 2008, 30(1): 25-36.
[5] 李宏,刘洋,. 一类四阶抛物型积分-微分方程的混合间断时空有限元法[J]. 数值计算与计算机应用, 2007, 29(4): 413-420.
[6] 侯淑娟,李青,龙述尧. 基于显式有限元技术的梁截面抗撞性优化[J]. 数值计算与计算机应用, 2006, 27(4): 271-280.
[7] 骆艳,冯民富,. Stokes方程的稳定化间断有限元法[J]. 数值计算与计算机应用, 2006, 28(2): 163-174.
[8] 孙澈,曹松. 对流占优扩散问题的经济型流线扩散有限元法[J]. 数值计算与计算机应用, 2004, 26(3): 367-384.
[9] 赵庆华,朱起定. 有限元的u-强超收敛点[J]. 数值计算与计算机应用, 2004, 26(3): 285-292.
[10] 张文博,孙澈. 线性定常对流占优对流扩散问题的有限体积——流线扩散有限元法[J]. 数值计算与计算机应用, 2004, 26(1): 93-8.
[11] 罗振东,谢正辉,朱江,曾庆存. 非饱和水流问题的混合元法及其数值模拟[J]. 数值计算与计算机应用, 2003, 25(1): 113-128.
[12] 曹礼群,崔俊芝. 整周期复合材料弹性结构的有限元计算[J]. 数值计算与计算机应用, 1998, 20(3): 279-290.
[13] 罗振东. 非定常的热传导──对流问题的混合有限元法[J]. 数值计算与计算机应用, 1998, 20(1): 69-88.
Copyright © 2008 数值计算与计算机应用 版权所有
中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部
北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn
Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn
京ICP备05002806号-10