首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  联系我们 |  重点论文 |  在线办公 |
 数值计算与计算机应用  2011, Vol. 32 Issue (1): 33-40    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles

NUMERICAL SCHEMES FOR THE LEVEL SET EQUATIONS ON UNSTRUCTURED QUADRILATERAL MESHES
Cheng Junxia, Ren Jian
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
 全文: PDF (666 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

Abstract

Level set equations containing curvature are solved on unstructured quadrilateral meshes. We use spatial discretization by the Galerkin isoparametric finite element method, and semi-implicit time stepping. Conjugate gradient method solves the linear system of equations, whose coefficient matrix is symmetric and sparse. On Cartesian meshes and random meshes, the scheme of level set equations containing curvature is nearly second order accuracy in L2 and L norms. Example is given of nonsmooth level sets shortening stably without reinitialization by local curvature on unstructured quadrilateral meshes.

 引用本文: . 含曲率的水平集方程在非结构四边形网格上的数值离散方法[J]. 数值计算与计算机应用, 2011, 32(1): 33-40. . NUMERICAL SCHEMES FOR THE LEVEL SET EQUATIONS ON UNSTRUCTURED QUADRILATERAL MESHES[J]. Journal of Numerical Methods and Computer Applicat, 2011, 32(1): 33-40.

 [1] Barth T J and Sethian J A. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains[J]. Journal of Computational Physics, 1998, 145: 1-40. [2] Emilie Marchandise, Jean-Francois Remacle. A Quadrature-free Discontinuous Galerkin Method for the Level set equation. Journal of Computational Physics[J]. 2006, 212: 338-357. [3] Klause Deckelnick and Gerhard Dziuk. A Fully Discrete Numerical Scheme for Weighted Mean Curvature Flow[J]. Numerical Mathematics, 2002, 91: 423-452. [4] Osher S. and Sethian J. A., Fronts propagating with curvature-dependent speed: Algorithm based on Hamilton-Jacobian formulation[J]. Journal of Computational Physics, 1988, 79: 12. [5] Sethian J A. Level Set Methods and Fast Marching Methods[M]. Cambridge University Press. 1999. [6] Aslam T D. Investigation on Detonation Shock Dynamics[D]. Urbana: University of Illinois at Urbana-Champaign, 1996. [7] Sunhee Yoo. Wave Tracking in Complex Geometries[D]. Urbana: University of Illinois at Urbana-Champaign, 2003. [8] Hu changqing and Shu qiwang, A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations[R]. NASA/CR-1998-206903, 1998. [9] Bernardo Cockburn and Chi-Wang Shu, the Local Discontinuous Galerkin Methods for Timedependent Convection-Diffusion Systems[J]. SIAM J. Numer. Anal., 1996, 33: 522-554. [10] Lafon F, Osher S, High Order Two Dimensional Nonoscillatory Methods for Solving Hamilton-Jacobi Scalar Equations[J]. Journal of Computational Physics, 1996, 123: 235-253. [11] Benson D J. Computational methods in Lagrangian and Eulerian Hydrocodes[J]. Computer mehods in Applied Mechanics and Engineering, 1992, 99: 235-394. [12] Folkmar Bornemann, Christian Rasch. Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle[J]. Comput Visual Sci, 2006, 9: 57-69. [13] Sethian J A, Vladimirsky A. Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms[J]. SIAM J. Numer. Anal., 2003, 41: 325-363.
 没有找到本文相关文献
 Copyright © 2008 数值计算与计算机应用 版权所有 中国科学院数学与系统科学研究院 《数值计算与计算机应用》编辑部 北京2719信箱 (100190) Email: szjs@lsec.cc.ac.cn Support by Beijing Magtech Co.ltd   E-mail:support@magtech.com.cn京ICP备05002806号-10