计算数学    2007 29 (3): 225-234   ISSN: 0254-7791  CN: 11-2125/O1  

具有全局收敛性的求解对称非线性方程组的一个修改的信赖域方法
袁功林,鲁习文,韦增欣,
华东理工大学理学院,华东理工大学理学院,广西大学数学与信息科学学院 上海200237,上海200237,南宁530004
收稿日期 null  修回日期 null  网络版发布日期 2007-02-14
参考文献  

[1]Byrd R H,Schnabel R B,Schultz G A.A trust-region algorithm for nonlinearly contrained optimization[J].SIAM Journal on Numerical Analysis,1987,24:1152-1170. [2]Boggs P T,Kearsley A J,Tolle J W,A practical algorithm for general large scale nonlinear optimization problems[J].SIAM J.Optimization,1999,9:755-778. [3]Cells M R,Dennis J E,Tapia R A.A trust region strategy for nonlinear equality constrained optimization[J],in Numerical Optimization 1984,Boggs P T,Byrd R H and Schnabel R B,eds., SIAM,Philadelphia,PA,71-82. [4]Dennis J E,MoréJ J.A characteization of superlinear convergence and its application to quasi- Newton methods[J].Math.Comp.,1974,28:549-560. [5]Dennis J E,Schnabel R B.Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M].Prentice-Hall:Engiewood Cliffs,New Jersey,1983. [6]Fan J Y.A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[J]. J.Comput.Math.,2003,21:625-636. [7]Fu J H,Sun W Y.Noumonotone adaptive trust-region method for unconstrained optimization problems[J].Applied Mathematics and Computation,2005,163:489-504. [8]Flecher R.Practical Methods of Optimization,2nd edu.[D].John and Sons:Chichester,1987. [9]Gay D M.Computing optimal locally constrained steps[J].SIAM Journal on Scientific and Statis- cal Computing,1981(2):186-197. [10]Griewank A,The‘global’convergence of Broyden-like methods with a suitable line search[J].J. Austral.Math.Soc.Set.B,1986,28,75-92. [11]Li D,Fukushima M.A global and superlinear convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations[J].SIAM Journal on Numerical Analysis,1999,37:152-172. [12]Liu X,Yuan Y.A global convergent,locally superlinearly convergent algorithm for equality con- strained optimization[R].Research Report,ICM-97-84,Inst.Comp.Math.Sci/Eng.Computing, Chinese Academy of Sciences,Beijing,China. [13]MoréJ J,Garbow B S,Hilistrome K E.Testing unconstrained optimization software[J].ACM Trans.Math.Software,7(1981),17-41. [14]MoréJ J,Sorensen D C.Computing a trust-region step[J].SIAM Journal on Scientific and Sta- tistical Computing,1983(4):553-572. [15]Nocedal J,Yuan Y.Combining trust region and Line search techniques[J].Advances in Nonlinear Programming,1998:153-175. [16]Oortega J M,Rheinboldt W C,Iterative of nonlinear equations in several variables[M].New York: Academic Press,1970. [17]Powell M J D.Convergence properties of a class of minimization algorithms,in Nonlinear Pro- gramrning eds.Mangasarian O L,Meyer R R and Robinsonb S M,New York:Academic Press, 1975,2:1-27. [18]Rojas M,Santos S A,Sorensen D C,A new matrix-free Algorithm for the large-scale trust-region subproblem[J].SIAM J.Optim.,11(3):611-646. [19]Schnabel R B,Eskow R.A new modified chlesky factorization[J].SIAM J.Sci.Stat.Comput., 1990,11:1136-1158. [20]Schultz G A,Schnabel R B,Bryrd R H,A family of trust-region-based algorithms for uncon- strained minimization with strong global convergence properties[J].SIAM Journal on Numerical Analysis,1985,22:47-67. [21]Sterhaug T.The conjugate gradient method and trust regions in Large-scale optimization[J]. SIAM Journal Analysis,1983,20(3):626-637. [22]Vardi A.A trust-region algorithm for equality constrained minimization:Convergence properties and implementation[J].SIAM Journal of Numerical Analysis,1985,22:575-579. [23]Wei E,yuan G,Lian Z,An approximate Gauss-Newton-based BFGS method for solving symmetric nonlinear equations[J].Guangxi Sciences,2004,11(2):91-99. [24]Yamakawa E,Fuknshima M.Testing parallel bariable transformation[J].Comprt.Optim.Appl., 1999,13:253-274. [25] Yuan Y.Trust region algorithm for nonlinear equations[J].Information,1998(1):7-21. [26]Yuan Y.A review of trust region algoruthms for optimization[C].Proceedings of the fourth inter- national congress on industrial and applied mathematics,1999:271-282. [27]Yuan Y.On the truncated conjugate gradient method[J].Math.Program,2000,87:561-573. [28]Yuan G,Li X.An approximate Gauss-Newton-based BFGS method with descent directions for solving symmetric nonlinear equations[J].OR Transactions,2005,8(4):10-26. [29]Yuan G,Lu X.A nonmonotone Gauss-Newton-based BFGS method for solving symmetric non- linear equations[J].Journal of Lanzhou University(Natural Sciences),2005,41:851-855. [30]Zhaug H C.A Nonmonotone Trust Region algorithm for nonlinear optimization subject to general constraints[J].Journal of Computational Mathematics,2003,21:237-246. [31]Zhang J L,Zhaug X S.A Nonmonotone Adaptive Trust Region method and its convergence[J]. Computers and Mathematics with Applications,2003,45:1469-1477. [32]Zhang X S,Zhang J L,Liao L Z.An adaptive trust region method and its convergence[J].Science in China 2002,45:620-631.


通讯作者: