计算数学 1982, 4(4) 356-364 DOI:     ISSN: 0254-7791 CN: 11-2125/O1

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
论文
扩展功能
本文信息
Supporting info
PDF(356KB)
[HTML全文](0KB)
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
文章反馈
浏览反馈信息
本文关键词相关文章
本文作者相关文章
PubMed

高阶稀疏局部非线性方程组的一种拟牛顿方法

崔俊芝

中国科学院计算中心

摘要

§1.引言 当用有限元法或有限差分法分析非线性偏微分方程问题时,必然会导致求解非线性方程组的问题,即求 F(x)=0 (1.1)的解.其中,x=(x_1,x_2,…,Xx_n)~T∈D,D?R~n;F:D→R~n是一个非线性映射.因此,有效地求解非线性方程组(1.1),是分析相应的非线性问题的关键. 不管这些非线性问题是来自流体力学、固体力学,还是其他的物理范畴,它们所对应

关键词

ONE QUASI-NEWTON METHOD ON LARGE SPARSE AND LOCALLY NONLINEAR EQUATIONS

Cui Jun-zhi computing Center, Academia Sinica

Abstract:

First, an exact definition of sparsity and local nonlinearity for large nonlinear equations isgiven. Let ?~((1)) = {λ_(ij)~((1))} and ?~((2)) = {λ_(ij)~((2))}, where λ_(ij)~((1)) = 1 if x_j appears in f_i(x), 0 otherwise, λ_(ij)~((1)) = 1 if x_j appears as nonlinear term in f_i(x), 0 otherwise.Furthermore, E~((2)) = {(i, j)|λ_(ij)~((2)) = 1 } is defined. The quasi-newton scheme is well known x~((l+1)) = x~((l)) + αp, K~((l))p = -- F(x~((1))), l = 0, 1, 2,…,where K~((l+1)) = K~((l)) + M~((l)), M~((l))αp = r, r = F(x~((l+1)) M (α -- 1)F(x~((l))).We suppose that M~((l)) has the following form Then α_(ii)αp_i + α_(ij)αp_j = ξ_(ij)r_i, α_(ij)αp_i + α_(ij)αp_j = ξ_(ij)r_j.Minimizing under constraints ∑ j ξ_(ij) = 1, we can obtain {ξ_(ij)}, and theh A_(ij). The practical example shows that the above method has good efficiency, especially, for∑λ_(ij)~((2))<<∑λ_(ij)~((1)) << n~2.

Keywords:
收稿日期  修回日期  网络版发布日期 1982-04-14 00:00:00.0 
DOI:
基金项目:

通讯作者:
作者简介:

本刊中的类似文章

Copyright 2008 by 计算数学