计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  重点论文 |  在线办公 | 
计算数学  2019, Vol. 41 Issue (4): 395-405    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
二阶锥线性互补问题的广义模系矩阵分裂迭代算法
李枝枝1,2, 柯艺芬2, 储日升1, 张怀2,3
1. 中国科学院测量与地球物理研究所, 武汉 430077;
2. 中国科学院大学计算地球动力学重点实验室, 北京 100049;
3. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 青岛 266237
GENERALIZED MODULUS-BASED MATRIX SPLITTING ITERATION METHODS FOR SECOND-ORDER CONE LINEAR COMPLEMENTARITY PROBLEMS
Li Zhizhi1,2, Ke Yifen2, Chu Risheng1, Zhang Huai2,3
1. Institute of Geodesy and Geophysics, University of Chinese Academy of Sciences, Wuhan 430077, China;
2. Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
 全文: PDF (380 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 通过将二阶锥线性互补问题转化为等价的不动点方程,介绍了一种广义模系矩阵分裂迭代算法,并研究了该算法的收敛性.进一步,数值结果表明广义模系矩阵分裂迭代算法能够有效地求解二阶锥线性互补问题.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词模系矩阵分裂迭代算法   二阶锥   线性互补问题   收敛性     
Abstract: For the second-order cone linear complementarity problem, we reformulate it as an implicit fixed-point equation and propose a generalized modulus-based matrix splitting iteration method to solve it. The convergence of the proposed method is studied. Moreover, numerical results have shown its effectiveness.
Key wordsmodulus-based matrix splitting iteration method   second-order cone   linear complementarity problem   convergence   
收稿日期: 2018-03-27; 出版日期: 2019-11-16
基金资助:

国家重点研发计划项目(2017YFC0601505,2017YFC0601406,2018YFC1504200),国家杰出青年科学基金(41725017),国家自然科学基金重大项目(41590864),中国科学院战略性先导科技专项(B类)(XDB18010202),博士后创新人才支持计划(BX201700234),中国博士后科学基金(2017M620878).

引用本文:   
. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
. GENERALIZED MODULUS-BASED MATRIX SPLITTING ITERATION METHODS FOR SECOND-ORDER CONE LINEAR COMPLEMENTARITY PROBLEMS[J]. Mathematica Numerica Sinica, 2019, 41(4): 395-405.
 
[1] Alizadeh F and Goldfarb D. Second-order cone programming[J]. Mathematical Programming, 2003, 95:3-51.
[2] Andersen E D, Roos C and Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization[J]. Mathematical Programming, 2003, 95:249-277.
[3] Bai Z Z., Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 17:917-933.
[4] Chen J S. Two classes of merit functions for the second-order cone complementarity problem[J]. Mathematical Methods of Operations Research, 2006, 64:495-519.
[5] Chen J S and Pan S. A one-parametric class of merit functions for the second-order cone complementarity problem[J]. Computational Optimization and Applications, 2010, 45:581-606.
[6] Chen J S and Tseng P. An unconstrained smooth minimization reformulation of the second-order cone complementarity problem[J]. Mathematical Programming, 2005, 104:293-327.
[7] Eaves B C. The linear complementarity problem[J]. Management Science, 1971, 17:612-634.
[8] Facchinei F and Pang J S. Finite-dimensional variational inequalities and complementarity problems[J]. Springer Science and Business Media, 2007.
[9] Faraut J and Korányi A. Analysis on symmetric cones. Clarendon Press Oxford, 1994.
[10] Fukushima M, Luo Z Q and Tseng P. Smoothing functions for second-order-cone complementarity problems[J]. SIAM Journal on Optimization, 2002, 12:436-460.
[11] Hayashi S, Yamaguchi T, Yamashita N and Fukushima M. A matrix-splitting method for symmetric affine second-order cone complementarity problems[J]. Journal of Computational and Applied Mathematics, 2005, 175, 335-353.
[12] Ke Y F, Ma C F and Zhang H. The modulus-based matrix splitting iteration methods for secondorder cone linear complementarity problems[J]. Numerical Algorithms, 2018, 1-21.
[13] Lobo M S, Vandenberghe L, Boyd S and Lebret H. Applications of second-order cone programming[J]. Linear Algebra and its Applications, 1998, 284:193-228.
[14] Ma C F. A regularized smoothing Newton method for solving the symmetric cone complementarity problem[J]. Mathematical and Computer Modelling, 2011, 54:2515-2527.
[15] Murty K G and Yu F T. Linear complementarity, Linear and Nonlinear Programming. Vol. 3, Citeseer, 1988.
[1] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[2] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[3] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[4] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155.
[5] 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190.
[6] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36.
[7] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[8] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.
[9] 陈星玎, 李思雨. 求解PageRank的多步幂法修正的广义二级分裂迭代法[J]. 计算数学, 2018, 39(4): 243-252.
[10] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[11] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 计算数学, 2018, 39(3): 161-171.
[12] 张维, 王文强. 随机延迟微分方程分裂步单支θ方法的强收敛性[J]. 计算数学, 2018, 39(2): 135-149.
[13] 郑华, 罗静. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32.
[14] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62.
[15] 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10