Abstract:
Some properties of a combined approximating and interpolating ternary subdivision scheme, such as support, continuity and fractal property, are analyzed by means of the Laurent polynomials. The sufficient conditions of Ck continuity properties are proved. It is pointed out that the parameter can be adjusted to control the shape of the limit curve, which generates brand-new ternary schemes, and some comparisons with other methods are given. Examples show that this new family of schemes have shape preservation property.
. A CLASS OF COMBINED APPROXIMATING AND INTERPOLATING SUBDIVISION FOR CURVES[J]. Mathematica Numerica Sinica, 2019, 41(4): 367-380.
[1]
Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design[J]. Comput.Aided Geomet.Des., 1987, 4:257-268.
[2]
Hassan M F, Ivrissimitzis I P, Dodgson N A, Sabin M A. An interpolating 4-point C2 ternary stationary subdivision scheme[J]. Comput. Aided Geomet. Des., 2002, 19:1-18.
Maillot J, Stam J. A unified subdivision scheme for polygonal modeling[J]. Comput. Graph. Forum, 2001, 20:471-479.
[8]
Rossignac J. Education-driven research in CAD[J]. Comput. Aid. Des., 2004, 36:1461-1469.
[9]
Beccari C V, Casciola G, Romani L. A unified framework for interpolating and approximating univariate subdivision[J]. Appl. Math. Comput., 2010, 216:1169-1180.
Pan J, Lin S, Luo X. A combined approximating and interpolating subdivision scheme with C2 continuity[J]. Appl. Math. Lett., 2012, 25:2140-2146.
[16]
Rehan K, Sabri M A. A combined ternary 4-point subdivision scheme[J]. Appl. Math. Comput., 2016, 276:278-283.
[17]
Novara P, Romani L. Complete characterization of the regions of C2 and C3 convergence of combined ternary 4-point subdivision schemes[J]. Appl. Math. Lett., 2016, 62:84-91.
[18]
Lian J A. On a-ary subdivision for curve design:II. 3-point and 5-point interpolatory schemes[J]. Appl. Appl. Math., 2009, 3:176-187.
[19]
Zheng H C, Hu M, Peng G. Constructing (2n-1)-point ternary interpolatory subdivision schemes by using variation of constants[J]. International Conference on Computational Intelligence and Software Engineering(CISE), 2009, 25(4):1-4.
[20]
Mustafa G, Ghaffar A, Khan F. The odd-point ternary approximating schemes[J]. Amer. J. Comput. Math., 2011, 1:111-118.
[21]
Ghaffar A, Mustafa G, Qin K. Unification and application of 3-point approximating subdivision schemes of varying arity[J]. Open J. Appl. Sci., 2012, 2:48-52.
[22]
Gori L, Pitolli F, Santi E. Refinable ripplets with dilation 3[J]. Jaen J. Approx., 2011, 3:173-191.
[23]
Gori L, Pitolli F, Santi E. On a class of shape-preserving refinable functions with dilation 3[J]. J. Comput. Appl. Math., 2013, 245:62-74.
[24]
Hassan M F, Dodgson N A. Ternary and three-point univariate subdivision schemes[J]. In:A. Cohen, J.-L. Merrien, L.L. Schumaker (Eds.), Curve and Surface Fitting:Saint-Malo 2002, Nash-boro Press, 2003, 199-208.
[25]
Rehan K, Siddiqi S S. A family of ternary subdivision schemes for curves[J]. Appl. Math. Comput., 2015, 270:114-123.
[26]
Dyn N, Hormann K. Polynomial reproduction by symmetric subdivision schemes[J]. J. Approx. Theory, 2008, 155:28-42.
[27]
Conti C, Hormann K. Polynomial reproduction for univariate subdivision schemes of any arity[J]. J. Approx. Theory, 2011, 163:413-437.
[28]
Zheng H C, Ye Z L, Lei Y M, Liu X D. Fractal properties of interpolatory subdivision schemes and their application in fractal generation[J]. Chaos, Soliton. Fract., 2007, 32:113-123.
[29]
Tan J Q, Zhuang X L, Zhang L. A new four-point shape-preserving C3 subdivision scheme[J]. Comput. Aided Geomet. Des., 2014, 31:57-62.
[30]
Cao H J, Tan J Q. A binary five-point relaxation subdivision scheme[J]. J. Inf. Comput. Sci., 2013, 10:5903-5910.