计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  重点论文 |  在线办公 | 
计算数学  2019, Vol. 41 Issue (3): 242-258    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
扩散方程一种无条件稳定的保正并行有限差分方法
贾东旭1, 盛志强2, 袁光伟2
1. CAEP, 中国工程物理研究院研究生院, 北京 100088;
2. IAPCM, 北京应用物理与计算数学研究所 计算物理实验室, 北京 100088
A POSITIVITY-PRESERVING PARALLEL DIFFERENCE SCHEME FOR DIFFUSION EQUATION WITH UNCONDITIONAL STABILITY
Jia Dongxu1, Sheng Zhiqiang2, Yuan Guangwei2
1. The Graduate School of China Academy of Engineering Physics, P. O. Box 2101, Beijing, China;
2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing, China
 全文: PDF (436 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对扩散方程提出了一种保正的并行差分格式,并且这个格式为无条件稳定的.我们在每个时间层将计算区域分成许多个子区域以便于实施并行计算.格式构造中首先我们使用前两个时间层的计算结果在分区界面处通过一种非线性的保正外插来预估子区域界面值.然后在每个子区域内部使用经典的全隐格式进行计算.最后在界面处使用全隐格式进行校正(本质上这一步计算是显式计算).我们给出了一维与二维情形下的保正并行差分格式,并相应的给出了无条件稳定性证明.数值实验显示此并行格式具有二阶数值精度,而且无条件稳定性与保正性也均在数值实验中得到验证.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词扩散方程   并行差分   无条件稳定   保正格式     
Abstract: In this work, we propose a positivity-preserving parallel difference scheme for solving diffusion equation, and the scheme is unconditionally stable. On each time level, the domain is decomposed into many sub-domains for parallelism. Firstly we give a nonlinear positivitypreserving extrapolation method to predict the values on sub-domain interfaces using the values on previous two time levels. Then the fully implicit scheme is used with the predicted values for sub-domain problems. Finally the values on inner interface are updated by the fully implicit scheme, which is in fact an explicit calculation with the use of the sub-domain values just obtained. In this work, the schemes are given for both one and two dimension problem, and the unconditional stability is proved. Numerical tests demonstrate that the parallel scheme has second-order accuracy. Moreover, positivity and unconditional stability are also tested in the numerical experiments.
Key wordsDiffusion equation   Parallel difference   Unconditional stable   Positivity preserving   
收稿日期: 2017-08-11; 出版日期: 2019-08-21
基金资助:

国家自然科学基金项目(11571047,11571048),NASF项目(U1630249),科学挑战专题项目(No.JCKY2016212A502)和CAEP基金项目(2015B0202042)资助.

引用本文:   
. 扩散方程一种无条件稳定的保正并行有限差分方法[J]. 计算数学, 2019, 41(3): 242-258.
. A POSITIVITY-PRESERVING PARALLEL DIFFERENCE SCHEME FOR DIFFUSION EQUATION WITH UNCONDITIONAL STABILITY[J]. Mathematica Numerica Sinica, 2019, 41(3): 242-258.
 
[1] Evans D J, Abdullah A R B. Group explicit methods for parabolic equations[J]. International Journal of Computer Mathematics, 1983, 14(1):73-105.
[2] Dawson C N, Dupont T F. Explicit/Implicit, Conservative Domain Decomposition Procedures for Parabolic Problems Based on Block-Centered Finite Differences[J]. SIAM Journal on Numerical Analysis, 1994, 31(4):1045-1061.
[3] Yuan G, Shen L. Stability and convergence of the explicit-implicit conservative domain decomposition procedure for parabolic problems[J]. Computers & Mathematics with Applications, 2004, 47(4):793-801.
[4] Zhu S, Yuan G, Sun W. Convergence and stability of explicit/implicit schemes for parabolic equations with discontinuous coefficients[J]. International Journal of Numerical Analysis & Modeling, 2004, 1(2):131-146.
[5] Dawson C N, Du Q, Dupont T F. A finite difference domain decomposition algorithm for numerical solution of the heat equation[J]. Mathematics of Computation, 1991, 57(195):63-71.
[6] Sheng Z, Yuan G, Hang X. Unconditional stability of parallel difference schemes with second order accuracy for parabolic equation[J]. Applied Mathematics & Computation, 2007, 184(2):1015-1031.
[7] Yuan G W, Hang X D, Sheng Z Q. Parallel difference schemes with interface extrapolation terms for quasi-linear parabolic systems[J]. Science in China, 2007, 50(2):253-275.
[8] Zhu S. Conservative domain decomposition procedure with unconditional stability and secondorder accuracy[J]. Applied Mathematics & Computation, 2010, 216(11):3275-3282.
[9] Yuan G, Yao Y, Yin L. A Conservative Domain Decomposition Procedure for Nonlinear Diffusion Problems on Arbitrary Quadrilateral Grids[J]. SIAM Journal on Scientific Computing, 2011, 33(3):1352-1368.
[10] Hao W, Zhu S. Domain decomposition schemes with high-order accuracy and unconditional stability[J]. Applied Mathematics & Computation, 2013, 11(11):6170-6181.
[11] Wang R, Zhang Y. Conservative domain decomposition procedure for the variable coefficient diffusion equation[J]. Journal of Information and Computing Science, 2014, 9(1):22-30.
[12] Shi, Liao. Unconditional Stability of Corrected Explicit-Implicit Domain Decomposition Algorithms for Parallel Approximation of Heat Equations[J]. SIAM Journal on Numerical Analysis, 2006, 44(4):1584-1611.
[13] Yuan G, Hang X. Conservative Parallel Schemes for Diffusion Equations[J]. Jisuan Wuli/chinese Journal of Computational Physics, 2010, 27(4):475-491.
[14] Liang D, Du C. The efficient S-DDM scheme and its analysis for solving parabolic equations[J]. Journal of Computational Physics, 2014, 272(9):46-69.
[15] Zhou Z, Liang D. The Mass-Preserving S-DDM Scheme for Two-Dimensional Parabolic Equations[J]. Communications in Computational Physics, 2016, 19(2):411-441.
[16] Zhou Z, Liang D. The mass-preserving and modified-upwind splitting DDM scheme for time dependent convection diffusion equations[J]. Journal of Computational and Applied Mathematics, 2017, 317:247-273.
[17] Droniou J. Finite volume schemes for diffusion equations:Introduction to and review of modern methods[J]. Mathematical Models & Methods in Applied Sciences, 2014, 24(8):1575-1619.
[18] Sheng Z, Yuan G. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes[J]. Journal of Computational Physics, 2011, 230(7):2588-2604.
[19] Lipnikov K, Shashkov M, Svyatskiy D, Vassilevski Y. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes[J]. Journal of Computational Physics, 2007, 227(1):492-512.
[20] Yuan G, Sheng Z. Monotone finite volume schemes for diffusion equations on polygonal meshes[J]. Journal of Computational Physics, 2008, 227(12):6288-6312.
[21] Sheng Z, Yuan G. An improved monotone finite volume scheme for diffusion equation on polygonal meshes[J]. Journal of Computational Physics, 2012, 231(9):3739-3754.
[22] Sheng Z, Yuan G. A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation[J]. Journal of Scientific Computing, 2015, 1-25.
[23] Sheng Z, Yue J, Yuan G. A parallel finite volume scheme preserving positivity for diffusion equation on distorted meshes[J]. Numerical Methods for Partial Differential Equations, 2017.
[1] 张燕美, 兰斌, 盛志强, 袁光伟. 非定常对流扩散方程保正格式解的存在性[J]. 计算数学, 2019, 41(4): 381-394.
[2] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[3] 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[4] 张荣培, 李明军, 蔚喜军. Chebyshev谱配置方法求解反应扩散方程组[J]. 计算数学, 2017, 38(4): 271-281.
[5] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[6] 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178.
[7] 刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.
[8] 常利娜, 袁光伟, 曾清红. 非匹配网格上求解扩散方程的高精度结点值重构算法[J]. 计算数学, 2016, 37(1): 57-66.
[9] 岳晶岩, 袁光伟, 盛志强. 多边形网格上扩散方程新的单调格式[J]. 计算数学, 2015, 37(3): 316-336.
[10] 崔霞, 岳晶岩. 守恒型扩散方程非线性离散格式的性质分析和快速求解[J]. 计算数学, 2015, 37(3): 227-246.
[11] 王帅, 杭旭登, 袁光伟. 三维多面体网格上扩散方程的保正格式[J]. 计算数学, 2015, 37(3): 247-263.
[12] 杭旭登. Du Fort-Frankel格式及DFF-I并行格式的稳定性[J]. 计算数学, 2015, 37(3): 273-285.
[13] 王自强, 曹俊英. 时间分数阶扩散方程的一个新的高阶数值格式[J]. 计算数学, 2014, 35(4): 277-288.
[14] 赵秉新. 一维非定常对流扩散方程的高阶组合紧致迎风格式[J]. 计算数学, 2012, 33(2): 138-148.
[15] 张琎, 王震. 双曲方程基于分离算子的交替方向差分算法[J]. 计算数学, 2011, 32(3): 159-164.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10