计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  重点论文 |  在线办公 | 
计算数学  2019, Vol. 41 Issue (1): 52-65    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
非Hermitian正定线性方程组的外推的HSS迭代方法
潘春平, 王红玉, 曹文方
浙江工业职业技术学院 人文社科部, 绍兴 312000
ON EXTRAPOLATED HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHOD FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS
Pan Chunping, Wang Hongyu, Cao Wenfang
Dept. of Humanities and Social Sciences, Zhejiang Industry Polytechnic College, Shaoxing 312000, China
 全文: PDF (376 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了高效地求解大型稀疏非Hermitian正定线性方程组,在白中治、Golub和Ng提出的Hermitian和反Hermitian分裂(HSS)迭代法的基础上,通过引入新的参数并结合迭代法的松弛技术,对HSS迭代方法进行加速,提出了一种新的外推的HSS迭代方法(EHSS),并研究了该方法的收敛性.数值例子表明:通过参数值的选择,新方法比HSS方法具有更快的收敛速度和更少的迭代次数,选择了合适的参数值后,可以提高HSS方法的收敛效率.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词迭代方法   交替迭代   HSS方法   非Hermitian矩阵     
Abstract: In order to solve large sparse non-Hermitian positive definite linear systems quickly and efficiently, Bai, Golub and Ng studied the Hermitian and skew-Hermitian splitting iterations(HSS). Through accelerating the HSS iterative algorithms by using new relaxation parameter, An extrapolated method of the Hermitian and skew-Hermitian splitting iterations(EHSS) is proposed in this paper. Under some suitable conditions, we give the convergence results. Numerical results show that the new method can improve the convergence efficiency, improve the HSS iterative methods.
Key wordsiterative methods   alternating iterative   HSS method   non-Hermitian matrix   
收稿日期: 2017-08-09;
基金资助:

浙江省教育厅高校访问学者教师专业发展项目资助(FX2017116).

引用本文:   
. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1): 52-65.
. ON EXTRAPOLATED HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHOD FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS[J]. Mathematica Numerica Sinica, 2019, 41(1): 52-65.
 
[1] Young D M. Iterative Solutions of Large Linear Systems[M]. New York:Academic Press 1971.
[2] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24:603-626.
[3] Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. Numer. Math., 2004, 98:1-32.
[4] Bai Z Z, Golub G H, Ng M K. On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations[J]. Numer. Linear Algebra Appl., 2007, 14:319-335.
[5] Bai Z Z, Golub G H, Li C K. Convergence properties of preconditioned Hermitian and skewHermitian splitting methods for non-Hermitian positive semidefinite matrices[J]. Math. Comput., 2007, 76:287-298.
[6] Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J. Sci. Comput., 2006, 28:583-603.
[7] Li L, Huang T Z, Liu X P. Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems[J]. Numer. Linear Algebra Appl., 2007, 14:217-235.
[8] Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J. Sci. Comput., 2005, 26:844-863.
[9] Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting methods for saddle point problems[J]. IMA J. Numer. Anal., 2007, 27:1-23.
[10] Pan C P, On generalized preconditioned Hermitian and skew-Hermitian splitting methods for saddle point problems[J]. WSEAS Transactions on Mathematics 2012, 11:1147-1156.
[11] Bai Z Z. Optimal parameters in the HSS-like methods for saddle-point problems[J]. Numer. Linear Algebra Appl., 2009, 16:447-479.
[12] Zhou R, Wang X, Zhou P. A modified HSS iteration method for solving the complex linear matrix equation AXB=C[J]. Journal of Computational Mathematics, 2016, 34(4):437-450.
[13] Meng G Y, Wen R P, Zhao Q S. The generalized HSS method with a flexible shift-parameter for non-Hermitian positive definite linear systems[J]. BIT Numerical Mathematics, 2016, 56:543-556.
[14] Cao Y, Ren Z R, Shi Q. A simplified HSS preconditioner for generalized saddle point problems[J]. BIT Numerical Mathematics, 2016, 56:423-439.
[15] 潘春平. 关于鞍点问题的预处理HSS-SOR交替分裂迭代方法[J].高校应用数学学报, 2012, 27(4):456-464.
[16] 潘春平. 鞍点问题的预处理HSS-SOR二级分裂迭代方法[J].高校应用数学学报, 2013, 28(3):367-378.
[17] 潘春平.关于鞍点问题的广义预处理HSS-SOR交替分裂迭代方法[J]. 计算数学, 2013,35(4):353-364. 浏览
[18] 徐青青, 戴华. 广义Lyapunov方程的HSS迭代法[J].应用数学与计算数学学报, 2015, 29(4):383-394.
[1] 曾闽丽, 张国凤. 速度追踪问题中鞍点系统的新分裂迭代[J]. 计算数学, 2016, 38(4): 354-371.
[2] 张凯院, 耿小姣, 聂玉峰. 一类Riccati方程组对称自反解的两种迭代算法[J]. 计算数学, 2016, 38(2): 161-170.
[3] 潘春平. 关于Katz指标的二级分裂迭代方法[J]. 计算数学, 2015, 37(4): 390-400.
[4] 罗兴钧, 张荣, 熊玲娟, 胡文玉. 求解Richardson迭代方程的快速配置法[J]. 计算数学, 2015, 36(4): 261-274.
[5] 潘春平 . 关于PageRank的广义二级分裂迭代方法[J]. 计算数学, 2014, 36(4): 427-436.
[6] 张秀梅, 王川龙. 求解大型非对称线性系统的一种新的预处理方法[J]. 计算数学, 2014, 35(1): 28-34.
[7] 潘春平. 关于鞍点问题的广义预处理HSS-SOR交替分裂迭代方法[J]. 计算数学, 2013, 35(4): 353-364.
[8] 潘春平, 王红玉. 一种求解鞍点问题的广义预条件对称-反对称分裂迭代法[J]. 计算数学, 2011, 32(3): 174-182.
[9] 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 计算数学, 2011, 32(3): 183-195.
[10] 沈海龙, 邵新慧, 张铁, 李长军. H-矩阵方程组的预条件迭代法[J]. 计算数学, 2009, 30(4): 266-276.
[11] 赵景余, 张国凤, 常岩磊. 求解鞍点问题的一种新的结构算法[J]. 计算数学, 2009, 30(2): 138-142.
[12] 廖安平, 段雪峰, 沈金荣. 矩阵方程X+A^{*}X^{-q}A=Q(q\geq 1)的Hermitian正定解[J]. 计算数学, 2008, 30(4): 369-378.
[13] 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12.
[14] 高东杰,张玉海,. 矩阵方程X-A~*X~qA=Q(q>0)的Hermite正定解[J]. 计算数学, 2007, 29(1): 73-80.
[15] 王进芳,张玉海,朱本仁. 矩阵方程X+A~*X~(-q)A=I(q>0)的Hermite正定解[J]. 计算数学, 2004, 26(1): 61-72.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10