计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  重点论文 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (4): 402-417    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
稳健矩阵回归模型和方法研究
陈丙振, 孔令臣, 尚盼
北京交通大学理学院, 北京 100044
THE STUDY OF ROBUST MATRIX REGRESSION MODELS AND ALGORITHMS
Chen Bingzhen, Kong Lingchen, Shang Pan
School of Science, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF (528 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 随着大数据时代的到来,我们面临的数据越来越复杂,其中待估系数为矩阵的模型亟待构造和求解.无论在统计还是优化领域,许多专家学者都致力于矩阵模型的统计性质分析及寻找其最优解的算法设计.当随机误差期望为0且同方差时,采用基于最小二乘的模型可以很好地解决问题.当随机误差异方差,分布为重尾分布(如双指数分布,t-分布等)或数据含有异常值时,需要考虑稳健的方法来求解问题.常用的稳健方法有最小一乘,分位数,Huber等.目前稳健方法的研究大多集中于线性回归问题,对于矩阵回归问题的研究比较缺乏.本文从最小二乘模型讲起,对矩阵回归问题进行了总结和评述,同时列出了一些文献和简要介绍了我们的近期的部分工作.最后对于稳健矩阵回归,我们提出了一些展望和设想.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词稳健矩阵回归   矩阵优化   优化理论   优化算法     
Abstract: With the breakout of the big data era, the data we are interested in is more and more complex. Especially, the model with matrix coefficient is in urgent to be constructed and solved. Many scholars are devoted to studying the statistical property analysis and designing algorithms for solving the matrix model. When the random errors have expectation 0 and the same variance, the method based on the least square loss function may perform well. However, when the random errors are heteroscedastic or the distribution of the errors are heavy-tailed (such as bi-exponential distribution, t-distribution, etc.) or the data contain outliers, the robust methods should be considered. The common robust methods are LAD, Quantile, Huber, etc. Most of the current research on the robust methods focus on the linear regression problem. There is few research on matrix regression problem. In this paper, we start with the least squares models, then summarize and comment on some matrix regression models. At the same time, we list some papers and briefly introduce some of our recent work. Finally, for the robust matrix regression problem, we propose some ideas and prospects.
Key wordsrobust matrix regression   matrix optimization   optimization theory   optimization algorithm   
收稿日期: 2017-12-12;
基金资助:

国家自然科学基金(批准号:11431002和11671029),河北省高等学校科学技术研究青年基金项目(批准号:QN2017402)和北京交通大学海滨学院教研项目(HBJY16005).

引用本文:   
. 稳健矩阵回归模型和方法研究[J]. 计算数学, 2018, 40(4): 402-417.
. THE STUDY OF ROBUST MATRIX REGRESSION MODELS AND ALGORITHMS[J]. Mathematica Numerica Sinica, 2018, 40(4): 402-417.
 
[1] Amin M, Song L, Thorlie M A, Wang X. SCAD-Penalized Quantile Regression For HighDimensional Data Analysis And Variable Selection[J]. Statistica Neerlandica, 2015, 69(3):212-235.
[2] Arslan O. Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression[J]. Computational Statistics and Data Analysis, 2012, 56(6):1952-1965.
[3] 常象宇, 徐宗本, 张海, 王建军, 梁勇. 稳健lq(0
[1] 赵志宁, 石全, 张军刚. 基于改进离散粒子群优化算法的作战弹药分配研究[J]. 计算数学, 2013, 34(3): 205-211.
[2] 黄力明. 基于混沌微粒群优化算法的阈值图像分割[J]. 计算数学, 2008, 29(2): 119-125.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10