计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  重点论文 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (4): 367-386    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一类自适应广义交替方向乘子法
姜帆, 刘雅梅, 蔡邢菊
南京师范大学数学科学学院, 南京 210023
A SELF-ADAPTIVE GENERALIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS
Jiang Fan, Liu Yamei, Cai Xingju
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
 全文: PDF (657 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 广义交替方向乘子法是求解凸优化问题的有效算法.当实际问题中子问题难以求解时,可以采用在子问题中添加邻近项的方法处理,邻近矩阵正定时,算法收敛,然而这也会使迭代步长较小.最新研究表明,邻近矩阵可以有一定的不正定性.本文在基于不定邻近项的广义交替方向乘子法框架下,提出一种自适应的广义交替方向乘子法,动态地选择邻近矩阵,增大迭代步长.在一些较弱的假设下,证明了算法的全局收敛性.我们进行一些初等数值实验,验证了算法的有效性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词凸优化   广义交替方向乘子法   自适应   不定邻近项   全局收敛     
Abstract: Generalized alternating direction method of multipliers (G-ADMM) is effective in solving the convex optimization problem. When the subproblem is difficult to solve in practical problem, we can add the proximal term in the subproblem. The positive definiteness of the proximal matrix guarantees the convergence while resulting in the tiny step size. A new study indicates that the proximal matrix can be indefinite. In this paper, based on the frame of G-ADMM with indefinite proximal term, we propose a self-adaptive G-ADMM while the proximal matrix is dynamically selected to increase the step size. Under mild assumptions, we prove the global convergence of the proposed method. The preliminary numerical results indicate that the new algorithm is efficient.
Key wordsConvex optimization   generalized alternating direction method of multipliers   self-adaptive   indefinite proximal term   global convergence   
收稿日期: 2018-01-13;
基金资助:

国家自然科学基金青年项目(11401315),国家自然科学基金项目(11571178).

引用本文:   
. 一类自适应广义交替方向乘子法[J]. 计算数学, 2018, 40(4): 367-386.
. A SELF-ADAPTIVE GENERALIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS[J]. Mathematica Numerica Sinica, 2018, 40(4): 367-386.
 
[1] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends R in Machine Learning, 2011, 3(1):1-122.
[2] Eckstein J, Bertsekas D P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[J]. Mathematical Programming, 1992, 55(1):293-318.
[3] Fang E X, He B S, Liu H, Yuan X M. Generalized alternating direction method of multipliers:new theoretical insights and applications[J]. Mathematical Programming Computation, 2015, 7(2):149-187.
[4] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers and Mathematics with Applications, 1976, 2(1):17-40.
[5] Gao B, Ma F. Symmetric alternating direction method with indefinite proximal regularization for linearly constrained convex optimization[J]. Journal of Optimization Theory and Applications, 2018, 176(1):1-27.
[6] Glowinski R, Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires[J]. Revue Française d'Automatique, Informatique, Recherche Opérationelle, 1975, 2:41-76.
[7] Hansen P C, Nagy J G, O'Leary D P. Deblurring images:matrices, spectra, and filtering[M]. SIAM, Philadelphia, 2006.
[8] He B S. PPA-like contraction methods for convex optimization:a framework using variational inequality approach[J]. Journal of Operations Research Society of China, 2015, 3(4):391-420.
[9] He B S, Ma F, Yuan X M. Linearized alternating direction method of multipliers via positiveindefinite proximal regularization for convex programming[J/OL]. http://www.optimizationonline.org, 2016-07-31.
[10] He B S, Xu M H, Yuan X M. Solving large-scale least squares semidefinite programming by alternating direction methods[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(1):136-152.
[11] Li M, Li X X, Yuan X M. Convergence analysis of the generalized alternating direction method of multipliers with logarithmic-quadratic proximal regularization[J]. Journal of Optimization Theory and Applications, 2015, 164(1):218-233.
[12] Recht B, Fazel M, Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3):471-501.
[13] Tao M, Yuan X M. Recovering low-rank and sparse components of matrices from incomplete and noisy observations[J]. SIAM Journal on Optimization, 2011, 21(1):57-81.
[14] Tibshirani R J. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B, 1996, 267-288.
[15] Yang J F, Yuan X M. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization[J]. Mathematics of Computation, 2013, 82(281):301-329.
[1] 郭科, 韩德仁. 单调算子理论与分裂算法[J]. 计算数学, 2018, 40(4): 418-435.
[2] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[3] 葛志昊, 葛媛媛. 几乎不可压线弹性问题的新的Uzawa型自适应有限元方法[J]. 计算数学, 2018, 40(3): 287-298.
[4] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62.
[5] 徐海文, 孙黎明. 一类凸优化的加速混合下降算法[J]. 计算数学, 2017, 39(2): 200-212.
[6] 申远, 刘珊珊. 一种新的自适应步长梯度投影法[J]. 计算数学, 2016, 37(4): 307-314.
[7] 张纯, 蔡邢菊, 韩德仁. 求鞍点问题的新的原始-对偶算法[J]. 计算数学, 2016, 37(3): 167-178.
[8] 庄杰鹏, 彭拯. —种修正的Cauchy-Barzilai-Borwein算法[J]. 计算数学, 2016, 37(3): 186-198.
[9] 刘紫娟, 李慧云, 刘新为. 外推系数带参数的加速邻近梯度算法[J]. 计算数学, 2016, 37(3): 211-222.
[10] 刘金魁. 解凸约束非线性单调方程组的无导数谱PRP投影算法[J]. 计算数学, 2016, 38(2): 113-124.
[11] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112.
[12] 简金宝, 尹江华, 江羡珍. 一个充分下降的有效共轭梯度法[J]. 计算数学, 2015, 37(4): 415-424.
[13] 施意. 不同密度与粘性的多相流移动接触线问题的自适应有限元方法[J]. 计算数学, 2015, 36(4): 297-309.
[14] 刘会坡. 中子输运方程误差估计及自适应计算[J]. 计算数学, 2015, 37(3): 264-272.
[15] 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 计算数学, 2015, 36(3): 166-184.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10