计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (3): 287-298    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
几乎不可压线弹性问题的新的Uzawa型自适应有限元方法
葛志昊, 葛媛媛
河南大学数学与统计学院 & 应用数学所, 开封 475004
NEW UZAWA-TYPE ADAPTIVE FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY PROBLEM
Ge Zhihao, Ge Yuanyuan
School of Mathematics and Statistics & Institute of Applied Mathematics, Henan University, Kaifeng 475004, China
 全文: PDF (383 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对几乎不可压线弹性问题设计新的Uzawa型自适应有限元方法,该方法可克服“闭锁”现象.通过引入“压力”变量将弹性问题转化为一个鞍点系统,对该系统将Uzawa型迭代法和自适应有限元方法相结合,建立了Uzawa型自适应有限元方法,并给出了该算法的收敛性.该算法采用低阶协调有限元逼近空间变量,选取的有限元空间对无需满足离散的BB条件.最后,数值算例验证了理论结果的正确性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词几乎不可压线弹性问题   离散BB条件   Uzawa型自适应有限元     
Abstract: In this paper, we propose two new Uzawa-type finite element methods for nearly incompressible linear elasticity problem, which could overcome the locking phenomenon. By introducing an extra "pressure" variable, we reformulate the original problem into a saddlepoint system, then we propose the new Uzawa-type adaptive finite element methods, and give the convergent results of the new methods. Our method is locking-free for any pair of the finite element spaces including the pair of finite element spaces which does not satisfy the discrete BB condition. Finally, we present some numerical examples to verify the theoretical results.
Key wordsNearly incompressible linear elasticity   BB condition   Uzawa iterative method   adaptive finite element method   
收稿日期: 2017-06-09;
基金资助:

河南省自然科学基金(No:162300410031),河南大学优秀青年资助项目(No:yqpy20140039).

引用本文:   
. 几乎不可压线弹性问题的新的Uzawa型自适应有限元方法[J]. 计算数学, 2018, 40(3): 287-298.
. NEW UZAWA-TYPE ADAPTIVE FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY PROBLEM[J]. Mathematica Numerica Sinica, 2018, 40(3): 287-298.
 
[1] Johnson C, Mercier B. Some equilibrium finite element methods for two dimensional elasticity problems[J]. Numer. Math., 1978, 30(1):103-116.
[2] Stenberg R. A family of mixed finite elements for the elasticity problem[J]. Numer. Math., 1988, 53(5):513-538.
[3] Falk R. Noncomforming finite element methods for the equations of linear elasticity[J]. Math. Comp., 1991, 57:529-550.
[4] Aronld D, Winther R. Mixed finite elements for elasticity[J]. Numer. Math., 2002, 92:401-419.
[5] Auricchio F, Lovadina C. An analysis of some mixed-enhanced finite element for plane elasticity[J]. Comput. Meth. Appl. Mech. Engrg, 2005, 194:2947-2968.
[6] Falk R. Finite Element Methods for Linear Elasticity[M]. Lecture Notes in Mathematics, Springerverlag, 2008.
[7] Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity[J]. SIAM J. Numer. Anal., 1997, 34(2):640-663.
[8] Brink U, Stein E. On some mixed finite element methods for incompressible and nearly incompressible finite elasticity[J]. Comput. Mech., 1996, 19(1):105-119.
[9] Lamichhane B. Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity[J]. IMA J. Numer. Anal., 2009, 29(2):404-420.
[10] Lamichhane B. A mixed finite element method for nearly incompressible elasticity and Stokes equations using primal and dual meshes with quadrilateral and hexahedral grids[J]. J. Comput. Appl. Math., 2014, 260(2):356-363.
[11] Babuška I, Suri M. Locking effects in the finite element approximation of elasticity problems[J]. Numer. Math., 1992, 62(1):439-463.
[12] Babuška I, Suri M. On locking and robustness in the finite element method[J]. Numer. Anal., 1990, 29(5):1261-1293.
[13] Herrmann L. Elasticity equations for incompressible and nearly incompressible materials by a variational theorem[J]. AIAA J., 2015, 3(10):1896-1900.
[14] Bänsch E, Morin P. An adaptive Uzawa FEM for the stokes problem:convergence without the inf-sup condition[J]. Numer. Anal., 2002, 40:1207-1229.
没有找到本文相关文献

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10