 首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  重点论文 |  在线办公 |
 计算数学 2018, Vol. 40 Issue (3): 287-298    DOI:
 论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles NEW UZAWA-TYPE ADAPTIVE FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY PROBLEM
Ge Zhihao, Ge Yuanyuan
School of Mathematics and Statistics & Institute of Applied Mathematics, Henan University, Kaifeng 475004, China
 全文: PDF (383 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料

 服务 把本文推荐给朋友 加入我的书架 加入引用管理器 E-mail Alert RSS 作者相关文章

Abstract： In this paper, we propose two new Uzawa-type finite element methods for nearly incompressible linear elasticity problem, which could overcome the locking phenomenon. By introducing an extra "pressure" variable, we reformulate the original problem into a saddlepoint system, then we propose the new Uzawa-type adaptive finite element methods, and give the convergent results of the new methods. Our method is locking-free for any pair of the finite element spaces including the pair of finite element spaces which does not satisfy the discrete BB condition. Finally, we present some numerical examples to verify the theoretical results.

 引用本文: . 几乎不可压线弹性问题的新的Uzawa型自适应有限元方法[J]. 计算数学, 2018, 40(3): 287-298. . NEW UZAWA-TYPE ADAPTIVE FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY PROBLEM[J]. Mathematica Numerica Sinica, 2018, 40(3): 287-298.

  Johnson C, Mercier B. Some equilibrium finite element methods for two dimensional elasticity problems[J]. Numer. Math., 1978, 30(1):103-116. Stenberg R. A family of mixed finite elements for the elasticity problem[J]. Numer. Math., 1988, 53(5):513-538. Falk R. Noncomforming finite element methods for the equations of linear elasticity[J]. Math. Comp., 1991, 57:529-550. Aronld D, Winther R. Mixed finite elements for elasticity[J]. Numer. Math., 2002, 92:401-419. Auricchio F, Lovadina C. An analysis of some mixed-enhanced finite element for plane elasticity[J]. Comput. Meth. Appl. Mech. Engrg, 2005, 194:2947-2968. Falk R. Finite Element Methods for Linear Elasticity[M]. Lecture Notes in Mathematics, Springerverlag, 2008.  Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity[J]. SIAM J. Numer. Anal., 1997, 34(2):640-663. Brink U, Stein E. On some mixed finite element methods for incompressible and nearly incompressible finite elasticity[J]. Comput. Mech., 1996, 19(1):105-119. Lamichhane B. Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity[J]. IMA J. Numer. Anal., 2009, 29(2):404-420.  Lamichhane B. A mixed finite element method for nearly incompressible elasticity and Stokes equations using primal and dual meshes with quadrilateral and hexahedral grids[J]. J. Comput. Appl. Math., 2014, 260(2):356-363. Babuška I, Suri M. Locking effects in the finite element approximation of elasticity problems[J]. Numer. Math., 1992, 62(1):439-463. Babuška I, Suri M. On locking and robustness in the finite element method[J]. Numer. Anal., 1990, 29(5):1261-1293.  Herrmann L. Elasticity equations for incompressible and nearly incompressible materials by a variational theorem[J]. AIAA J., 2015, 3(10):1896-1900.  Bänsch E, Morin P. An adaptive Uzawa FEM for the stokes problem:convergence without the inf-sup condition[J]. Numer. Anal., 2002, 40:1207-1229. 没有找到本文相关文献
 Copyright 2008 计算数学 版权所有 中国科学院数学与系统科学研究院 《计算数学》编辑部 北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持: 010-62662699 E-mail:support@magtech.com.cn 京ICP备05002806号-10