计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (3): 254-270    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
Helmholtz方程Cauchy问题的间接积分方程方法
孙瑶, 陈博
中国民航大学理学院数学系, 天津 300300
INDIRECT BOUNDARY INTEGRAL EQUATION METHOD FOR THE CAUCHY PROBLEM OF THE HELMHOLTZ EQUATION
Sun Yao, Chen Bo
College of science, Civil Aviation University of China, Tianjin 300300, China
 全文: PDF (1525 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文处理二维和三维Helmholtz方程的边界数据复原问题.通过利用位势理论近似问题的解,导出了解决Cauchy问题的一种非迭代积分方程方法.为了处理形成问题的不适定性,采用了Tikhonov正则化结合Morozov偏差原理的方法,并且给出了算法的收敛性和误差估计,最后给出了二维和三维的数值算例.通过数值算例我们检验了源点和边界之间距离的关系,算法关于噪声、源点数目的数值收敛性,稳定性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词数据恢复   正则化   积分方程     
Abstract: In this paper, we examine the data completion problem of the Helmholtz equation in two-and three-dimensionals. Through the use of a layer approach to the solution, we devise a numerical method for approximating the solution of Cauchy problem. The proposed method is non-iterative and intrinsically handle the case of noisy and incompatible data. In order to cope with this ill-posed problem, our formulation is based on Tikhonov regularization in conjunction with the Morozov discrepancy principle associated with linear ill-posed inverse problems and leads to convergent scheme. Convergence and stability estimates are then given with some examples for numerical verification on the efficiency of the proposed method. Two-and three-dimensional examples are given for checking the effectiveness of the proposed method. The numerical convergence, accuracy, and stability with respect to the number of source points, the distance between the pseudo and real boundary, and decreasing the amount of noise added into the input data, respectively, are also analyzed.
Key wordsNumerical reconstruction   Boundary integral equation   Regularization   
收稿日期: 2017-04-02;
基金资助:

国家自然科学基金(项目号:11501566)和中央高校基本科研业务费(项目号:3122017078).

引用本文:   
. Helmholtz方程Cauchy问题的间接积分方程方法[J]. 计算数学, 2018, 40(3): 254-270.
. INDIRECT BOUNDARY INTEGRAL EQUATION METHOD FOR THE CAUCHY PROBLEM OF THE HELMHOLTZ EQUATION[J]. Mathematica Numerica Sinica, 2018, 40(3): 254-270.
 
[1] Rggińska T, Regiński K. Approximate solution of a Cauchy problem for the Helmholtz equation[J]. Inverse Probl., 2006, 22:975-989.
[2] Alessandrini G, Rondi L, Rosset E, Vessella S. The stability for the Cauchy problem for elliptic equations[J] Inverse Probl., 2009, 25:1-47.
[3] Isakov V. Inverse Problems for Partial Differential Equations. Springer-Verlag, New York, 1998.
[4] Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375. Kluwer Academic, Dordrecht, 1996.
[5] Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol. 120. Springer, New York, 2011.
[6] Jin B T, Zheng Y. Boundary knot method for some inverse problems associated with the Helmholtz equation[J] Int. J. Numer. Methods Eng., 2005, 62:1636-1651.
[7] Lin J, Chen W, Wang F. A new investigation into regularization techniques for the method of fundamental solutions[J]. Math. Comput. Simul., 2011, 81:1144-1152.
[8] Marin L, Lesnic D. The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations[J]. Comput. Struct., 2005, 83:267-278.
[9] Wei T, Hon Y C, Ling L. Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators[J]. Eng. Anal. Bound. Elem., 2007, 31:373-385.
[10] Jin B T, Marin L. The plane wave method for inverse problems associated with Helmholtz-type equations[J]. Eng. Anal. Bound. Elem., 2008, 32:223-240.
[11] Karageorghis A. The plane waves method for axisymmetric Helmholtz problems[J] Eng. Anal. Bound. Elem., 2016, 69:46-56.
[12] Cheng H, Fu C L, Feng X L. An optimal filtering method for the Cauchy problem of the Helmholtz equation[J]. Appl. Math. Lett., 2011, 24:958-964.
[13] Sun Y, Zhang D, Ma F. A potential function method for the Cauchy problem of elliptic operators[J]. J. Math. Anal. Appl., 2012, 395:164-174.
[14] Reginska T, Wakulicz A. Wavelet moment method for the Cauchy problem for the Helmholtz equation[J]. J. Comput. Appl. Math., 2009, 223:218-229.
[15] Xiong X T, Zhao X C, Wang J X. Spectral Galerkinmethod and its application to a Cauchy problem of Helmholtz equation[J]. Numer. Algorithms, 2013, 63:691-711.
[16] Chen W, Fu Z J. Boundary particle method for inverse Cauchy problem of inhomogeneous inhomogeneous Helmholtz equations[J]. J. Mar. Sci. Technol., 2009, 17:157-163.
[17] Fu Z J, Chen W, Zhang C Z. Boundary particle method for Cauchy inhomogeneous potential problems[J] Inverse Prob. Sci. Eng., 2012, 20:189-207.
[18] Gu Y, Chen W, Fu Z J. Singular boundary method for inverse heat conduction problems in general anisotropic media[J]. Inverse Prob. Sci. Eng., 2013, 22:889-909.
[19] Berntsson F, Kozlov V A, Mpinganzima L, Turesson B O. An alternating iterative procedure for the Cauchy problem for the Helmholtz equation[J]. Inverse Probl. Sci. Eng., 2014, 22:45-62.
[20] Berntsson F, Kozlov V A, Mpinganzima L, Turesson B O. An accelerated alternating iterative procedure for the Cauchy problem for the Helmholtz equation[J]. Comput. Math. Apll., 2014, 68:44-60.
[21] Fu C L, Feng X L, Qian Z. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation[J]. Appl. Numer. Math., 2009, 59:2625-2640.
[22] Marin L, Elliott L, Heggs P J, et al. Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations[J]. Comput. Mech., 2003, 31:367-377.
[23] Marin L, Elliott L, Heggs P J, et al. BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method[J]. Eng. Anal. Bound. Elem., 2004, 28:1025-1034
[24] Marin L, Elliott L, Heggs P J, et al. Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation[J]. Int. J. Numer. Methods Eng., 2004, 60:1933-1947.
[25] Sun Y, Zhang D. An integral equations method for the Cauchy problem connected with the Helmholtz equation[J]. Math. Probl. Eng., 2013, 218760.
[26] Lee J W, Chen J Z, et al. Null-field BIEM for solving a scattering problem from a point source to a two-layer prolate spheroid[J]. Acta Mech., 2014, 225:873-891.
[27] Chen J T, Chen K H, Chen I L, et al. A new concept of modal participation factor for numerical instability in the dual BEM for exterior acoustics[J]. Mech. Res. Commun., 2003, 30:161-174.
[28] Marin L, Lesnic D. Boundary element solution for the Cauchy problem in linear elasticity using singular value decomposition[J]. Comput. Methods. Appl. Mech. Eng., 2002, 191(29-30):3257-3270.
[29] Chen J T, Chang Y L, Kao S K et al., Revisit of indirect boundary element method:sufficient and necessary formulation[J]. J. Sci. Comput., 2015, 65:467-485.
[30] Rizzo F J. An integral equation approach to boundary value problems in classical elastostatics[J]. Q. Appl. Math., 1967, 25:83-95.
[31] Altiero N J, Gavazza S D. On a unified boundary-integral equation method[J]. J. Elast., 1980, 10:1-9.
[32] Hong H K, Chen J T. Derivations of integral equations of elasticity[J]. J. Eng. Mech. ASCE 114(1998), 1028-1044.
[33] Sun Y. A meshless method based on the method of fundamental solution for solving the steadystate heat conduction problems[J]. Int. J. Heat Mass Transfer, 2016, 97:891-907.
[34] Colton D, Kress R. Integral Equation Methods in Scattering Theory. Wiley-Interscience, New York, 1983.
[35] Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. 3nd edition, SpringerVerlag, New York, 2013.
[36] Kress R. Linear Integral Equations. Springer-Verlag, Berlin, 1989
[37] Sun Y, Ma F, Zhang D. An integral equations method combined minimum norm solution for 3D elastostatics Cauchy problem[J]. Comput. Methods Appl. Mech. Eng., 2014, 271:231-252.
[38] Sun Y, Ma F. Appropriate implementation of an invariant MFS for inverse boundary determination problem[J]. Inverse Probl. Sci. Eng., 2015, 6:1040-1055.
[39] Sun Y. Indirect Boundary Integral Equation Method for the Cauchy Problem of the Laplace Equation[J]. J. Sci. Comput., 2017, 71(2):469-498.
[40] Sun Y, Ma F. Recovery of the temperature and the heat flux by a novel meshless method from the measured noisy data[J]. Eng. Anal. Boundary Elem., 2015, 59:112-122.
[1] 闵涛, 陈胜南. Symm积分方程数值求解的RRGMRES方法[J]. 计算数学, 2018, 39(1): 73-80.
[2] 陈云, 郭宝裕, 马祥园. 基于分数阶微积分正则化的图像处理[J]. 计算数学, 2017, 39(4): 393-406.
[3] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[4] 刘紫娟, 李慧云, 刘新为. 外推系数带参数的加速邻近梯度算法[J]. 计算数学, 2016, 37(3): 211-222.
[5] 乐航睿, 杨庆之. 求解正则化最小二乘问题的一个非精确交替方向乘子法[J]. 计算数学, 2016, 37(3): 223-232.
[6] 蔡振宁, 樊玉伟, 李若. 从离散速度模型到矩方法[J]. 计算数学, 2016, 38(3): 227-244.
[7] 罗兴钧, 张荣, 熊玲娟, 胡文玉. 求解Richardson迭代方程的快速配置法[J]. 计算数学, 2015, 36(4): 261-274.
[8] 贾现正, 张大利, 李功胜, 池光胜, 李慧玲. 空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J]. 计算数学, 2014, 36(2): 113-132.
[9] 蔡耀雄, 任全伟, 庄清渠. 一类四阶微积分方程的四阶差分格式[J]. 计算数学, 2014, 35(1): 59-68.
[10] 李繁春, 杨素华, 罗兴钧, 彭玉兵. 求解第一类Fredholm积分方程的多层迭代算法[J]. 计算数学, 2013, 35(3): 225-238.
[11] 王倩, 戴华. 求解离散不适定问题的正则化GMERR方法[J]. 计算数学, 2013, 35(2): 195-204.
[12] 杨正辉, 王连堂, 孟文辉. 求解周期结构中声波传播问题的一种边界元法[J]. 计算数学, 2013, 34(2): 95-104.
[13] 任全伟, 庄清渠. 一类四阶微积分方程的Legendre-Galerkin谱逼近[J]. 计算数学, 2013, 35(2): 125-136.
[14] 刘洪, 王新海, 任路, 胡治华. 偏心井产量变化规律研究[J]. 计算数学, 2012, 33(3): 159-166.
[15] 罗兴钧, 陈维君, 范林秀, 李繁春. 截断策略下求解第一类积分方程离散的DSM方法[J]. 计算数学, 2012, 34(2): 139-152.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10