计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (3): 227-240    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于几何连续的AT-β-Spline曲线曲面的构造
张迪, 刘华勇, 李璐, 张大明, 王焕宝
安徽建筑大学数理学院, 合肥 230601
THE CONSTRUCTION OF AT-β-SPLINE CURVE AND SURFACE MEETING WITH GEOMETRIC CONTINUITY
Zhang Di, Liu Huayong, Li Lu, Zhang Daming, Wang Huanbao
School of Sciences and Physics, Anhui Jianzhu University, Hefei 230022, China
 全文: PDF (6627 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了更好地修改给定的样条曲线曲面,构造了满足几何连续的带两类形状参数的代数三角多项式样条曲线曲面,简称为AT-β-Spline.这种代数三角曲线曲面不仅具有普通三角多项式的性质,而且具有全局的和局部的形状可调性.同时还具备较为灵活的连续性.当两类形状参数在给定的范围内任意取值时,这种带两类形状参数的AT-β-Spline曲线满足一阶几何连续性;如果给定两段相邻曲线段中的两类形状参数满足-1≤ α ≤ 1,μi=λi+1μi=λi=μi+1=λi+1时,则带两类形状参数的AT-β-Spline曲线满足C1G2连续.另外利用奇异混合的思想,构造了满足C1G2插值AT-β-Spline曲线,解决曲线反求的几何连续性等问题.同时还给出了旋转面的构造,描述了两类形状参数对旋转面的几何外形的影响;当形状参数取特殊值时,这种AT-β-Spline曲线曲面可以精确地表示圆锥曲线曲面.从实验的结果来看,本文构造的AT-β-Spline曲线曲面是实用的有效的.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词三角曲线曲面   几何连续性   插值拟合   形状参数   奇异混合     
Abstract: In order to modify the given curves and surfaces, the algebraic trigonometric polynomial spline curves and surfaces with two kinds of shape parameters are constructed and satisfy geometric continuity. It referred to as AT-β-Spline. The AT-β-Spline not only inherit the properties of the ordinary trigonometric spline curves, but also has global and local adjustable. When two kinds of shape parameters are given in a given range, an AT-β-Spline curve satisfies first order geometric continuity. In particular when two kinds of shape parameters-1 ≤ α ≤ 1, μi=λi+1 or μi=λi=μi+1=λi+1=λ, The AT-β-Spline curves with parameters meet the C1G2 continuity. By using the singular blending theory, we had constructed the interpolation AT-β-Spline curve which meet with the C1G2 continuity, the curve can solve the geometric continuity of the curve and inverse algorithm of the curve. At the same time, the paper have constructed the rotation surface and discussed the influence of shape parameters. This curve and surface can be represented by an example of a conic curve or surface. From the experimental results, the curve and surface constructed by this method is practical and effective.
Key wordstrigonometric curve and surface   geometric continuity   interpolation and approximation   shape parameter   singular blending   
收稿日期: 2016-10-25;
基金资助:

国家自然科学基金项目(61402010);安徽省高等学校自然科学研究项目(NO.KJ2018A0518;KJ2015JD16;KJ2016A151).

通讯作者: 刘华勇,E-mail:aiaiwj@126.com;lucianbull@gmail.com.     E-mail: aiaiwj@126.com,lucianbull@gmail.com
引用本文:   
. 基于几何连续的AT-β-Spline曲线曲面的构造[J]. 计算数学, 2018, 40(3): 227-240.
. THE CONSTRUCTION OF AT-β-SPLINE CURVE AND SURFACE MEETING WITH GEOMETRIC CONTINUITY[J]. Mathematica Numerica Sinica, 2018, 40(3): 227-240.
 
[1] Les Piegl, Wayne Tiller. The NURBS Book[M]. Springer-Verlag, New York, Second Edition, 1997.
[2] Zhang Jiwen. C-curves:an extension of cubic curves[J]. Computer Aided Geometric Design, 1996, 13(3):199-217.
[3] Zhang J W. C-Bé zier curves and surfaces[J]. Graphical Models and Images Processing, 1999, 61(1):2-15.
[4] Han X. Cubic trigonometric polynomial curves with a shape parameter[J]. Comput. Aided Geom. Design, 2004, 21:535-548.
[5] Han X. Quadratic trigonometric polynomial curves with a shaper parameter[J]. Comput. Aided Geom. Design, 2002, 19:503-512.
[6] Hu Gang, Qin Xinqiang. The construction of λμ-B-spline curves and its application to rotational surfaces[J]. Applied Mathematics and Computation, 2015, 266(2):194-211.
[7] Wang W T, Wang G Z. Uniform B-spline with shape parameter[J]. J. Comput. Aided Des. Comput. Graph., 2004, 16(6):783-788.
[8] Farin G. Curves and Surfaces for CAGD:A Practical Guide 5thed. Academic Press, San Diego, 2002.
[9] Ksasov B I, Sattayatham P. GB-splines of arbitrary order[J]. J. Comput. Appl. Math, 1999, 104(1):63-88.
[10] 严兰兰, 韩旭里.具有多种优点的三角多项式曲线曲面[J]. 计算机辅助设计与图形学学报, 2015, 27(10):1971-1979.
[11] Yin C J, Tan J Q. Trigonometric polynomial uniform B-spline curves and surfaces with multiple shape parameters[J]. J. Comput. Aided Des. Comput. Graph., 2011, 23(7):1131-1138.
[12] 陈素根, 赵正俊.拟三次三角B样条曲线曲面构造及其应用[J]. 小型微型计算机系统, 2015, 36(6):1331-1335.
[13] Zhu Y P, Han X L. Curves and surfaces construction based on new basis with exponential functions[J]. Acta Applicandae Mathematicae, 2014, 129(1):183-203.
[14] Zhu Y P, Han X L. New cubic rational basis with tension shape parameters[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3):273-298.
[15] 刘华勇, 李璐, 谢新平, 张大明. 带局部形状参数的代数三角样条曲线曲面的构造[J]. 小型微型计算机系统, 2017, 38(3):620-624.
[16] Xu Gang, Wang Guozhao. Extended Cubic Uniform B-spline and α-B-spline[J]. Acta Automatica Sinica, 2008, 34(8):980-984.
[17] Wu Xiaoqin, Han Xuli. Quadratic trigonometric polynomial curves with shape parameter[J]. Journal of Engineering Graphics, 2006, 1:92-97.
[1] 李军成, 刘成志. 带两个形状参数的同次Bézier曲线[J]. 计算数学, 2017, 39(2): 115-128.
[2] 张莉, 孙燕, 檀结庆, 时军. 一类新的(2n-1)点二重动态逼近细分[J]. 计算数学, 2017, 39(1): 59-69.
[3] 熊建, 郭清伟. 广义Wang-Ball曲线[J]. 计算数学, 2013, 34(3): 187-195.
[4] 熊建, 郭清伟. 广义Said-Ball曲线[J]. 计算数学, 2012, (1): 32-40.
[5] 刘植, 陈晓彦, 江平, 张莉. 基于函数值的线性有理插值样条的区域控制[J]. 计算数学, 2011, 33(4): 367-372.
[6] 熊建, 郭清伟, 朱功勤. 可整体或局部调控的C3, C4连续的插值曲线[J]. 计算数学, 2011, 32(3): 165-173.
[7] 吴荣军, 彭国华, 罗卫民. 一类带参 B 样条曲线的形状分析[J]. 计算数学, 2010, 32(4): 349-360.
[8] 江雷,王仁宏. 矩形域与三角域Bezier曲面间的PPG~n变换[J]. 计算数学, 1999, 21(2): 245-250.
[9] 王艳春. 一种二次保形插值参数曲面[J]. 计算数学, 1998, 20(2): 121-.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10