计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (1): 107-116    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
体积约束的非局部扩散问题的后验误差分析
葛志昊, 吴慧丽
河南大学数学与统计学院 & 应用数学所, 开封 475004
A POSTERIORI ERROR ANALYSIS OF NONLOCAL DIFFUSION PROBLEM WITH VOLUME CONSTRAINTS
Ge Zhihao, Wu Huili
School of Mathematics and Statistics & Institute of Applied Mathematics, Henan University, Kaifeng 475004, China
 全文: PDF (319 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对体积约束的非局部扩散问题构造了新的后验误差指示器,证明了后验误差指示器的可靠性以及有效性.数值算例验证了理论结果.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词非局部扩散问题   有限元方法   后验误差估计     
Abstract: In this paper, we propose a new posteriori error estimator for the nonlocal diffusion problem with volume constraints. And we prove the reliability and efficiency of the posteriori error estimator. Finally, we give the numerical experiments to verify the theoretical results.
Key wordsNonlocal diffusion problem   finite element method   posteriori error estimate.   
收稿日期: 2017-04-11;
基金资助:

河南省自然科学基金(No:162300410031),河南大学优秀青年资助项目(No:yqpy20140039).

引用本文:   
. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
. A POSTERIORI ERROR ANALYSIS OF NONLOCAL DIFFUSION PROBLEM WITH VOLUME CONSTRAINTS[J]. Mathematica Numerica Sinica, 2018, 40(1): 107-116.
 
[1] Kroner E. Elasticity theory of materials with long range forces[J]. Int. J. Soli. Struc., 1967, 3(5):731-742.
[2] Rogula D. Nonlocal theory of material media[M]. Springer, Berlin, 1982.
[3] Altan B. Uniqueness of initial-boundary value problems in nonlocal elasticity[J]. Int. J. Soli. Struc., 1989, 25(11):1271-1278.
[4] Altan B. Uniqueness in nonlocal thermoelasticity[J]. J. Ther. Stre., 1991, 14(2):121-128.
[5] Silling S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. J. Mech. Phys. Soli., 2000, 48(1):175-209.
[6] Silling S. Dynamic frature modeling with a meshfree peridynamic code[J]. Comput. Fluid and Solid Mech., 2003, 2003:641-644.
[7] Gilboa G., Osher S. Nonlocal operators with applications to image processing[J]. SIAM J. Mult. Model. Simu., 2008, 7(3):1005-1028.
[8] Du Q., Zhou K. Mathematical analysis for the peridynamics nonlocal continuum theory[J]. ESAIM Math. Model. Numer. Anal., 2011, 45(2):217-234.
[9] Emmrich E., Weckner O. On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity[J]. Comm. Math. Sci., 2007, 5(4):851-864.
[10] Emmrich E., Weckner O. Analysis and numerical approximation of an integro-differential equation modeling nonlocal effects in linear elasticity[J]. Math. and Mech. Solids, 2007, 4(4):363-384.
[11] Lehoucq R., Silling S. Force flux and the peridynamic stress tensor[J]. J. Mech. and Phys. Solids, 2008, 56(4):1566-1577.
[12] Gunzburger M., Lehoucq R. A nonlocal vector calculus with application to nonlocal boundary value problems[J]. SIAM J. Mult. Model. Simu., 2010, 8(5):1581-1598.
[13] Du Q., Gunzbueger M., Lehoucq R., Zhou K. A nonlocal vector caculus, nonlocal volumeconstrained problems, and the nonlocal balance laws[J]. Math. Models Meth. Appl. Sci., 2013, 23(3):493-540.
[14] Aksoylu B., Parks M. Variational theory and domain decomposition for nonlocal problems[J]. Appl. Math. and Comp., 2011, 217(14):6498-6515.
[15] Bobaru F., Yang M., Alves L., Silling S., Askari E., Xu J. Convergence, adaptive refinement, and scaling in 1d peridynamics[J]. Int. J. Numer. Meth. Eng., 2009, 77(6):852-877.
[16] Chen X., Gunzburger M. Continuous and discontinuous finite element methods for a peridynamics model of mechanics[J]. Comp. Meth. Appl. Mech. Eng., 2011, 200(9-12):1237-1250.
[17] Macek R., Silling S. Peridynamics via finite element analysis[J]. Fini. Elem. Anal. Desi., 43(15):1169-1178.
[18] Silling S., Askari E. A meshfree method based on the peridynamic model of solid mechanics[J]. Comp. and Stru., 2005, 83(17-18):1526-1535.
[19] Du Q., Tian L., Zhao X. A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models[J]. SIAM J. Numer. Anal., 2013, 51(2):1211-1234.
[20] Du Q., Ju L., Tian L., Zhou K. A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models[J]. Math. Comp., 2013, 82(284):1889-1992.
[1] 杨建宏. 定常Navier-Stokes问题低次等阶稳定有限体积元算法研究[J]. 计算数学, 2017, 38(2): 91-104.
[2] 周宇, 李秋齐. 基于降基多尺度有限元的PGD方法及其在含参数椭圆方程中的应用[J]. 计算数学, 2017, 38(2): 105-122.
[3] 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178.
[4] 李晓翠, 杨小远, 张英晗. 一类随机非自伴波方程的半离散有限元近似[J]. 计算数学, 2017, 39(1): 42-58.
[5] 曹济伟, 葛志昊, 刘鸣放. Stokes方程基于多尺度函数的稳定化有限元方法[J]. 计算数学, 2017, 38(1): 68-80.
[6] 赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4): 341-353.
[7] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[8] 王军平, 叶秀, 张然. 弱有限元方法简论[J]. 计算数学, 2016, 38(3): 289-308.
[9] 郑权, 高玥, 秦凤. Helmholtz方程外边值问题的基于修正的DtN边界条件的有限元方法[J]. 计算数学, 2016, 38(2): 200-211.
[10] 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[11] 周志强, 吴红英. 分数阶对流-弥散方程的移动网格有限元方法[J]. 计算数学, 2014, 35(1): 1-7.
[12] 赵智慧, 李宏, 方志朝. 非定常Stokes方程的全离散稳定化有限元格式[J]. 计算数学, 2014, 36(1): 85-98.
[13] 祝鹏, 尹云辉, 杨宇博. 奇异摄动问题内罚间断有限方法的最优阶一致收敛性分析[J]. 计算数学, 2013, 35(3): 323-336.
[14] 李宏, 周文文, 方志朝. Sobolev方程的CN全离散化有限元格式[J]. 计算数学, 2013, 35(1): 40-48.
[15] 李先崇, 孙萍, 安静, 罗振东. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10