计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (1): 24-32    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法
郑华, 罗静
韶关学院, 数学与统计学院, 韶关 512005
A PRECONDITIONED TWO-STEPS MODULUS-BASEDMATRIX SPLITTING ITERATION METHOD FORSOLVING LINEAR COMPLEMENTARITYPROBLEMS OF H-MATRICES
Zheng Hua, Luo Jing
School of Mathematics and Statistics, Shaoguan University, Shaoguan 512005, China
 全文: PDF (313 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文我们利用预处理技术推广了求解线性互补问题的二步模基矩阵分裂迭代法,并针对H-矩阵类给出了新方法的收敛性分析,得到的理论结果推广了已有的一些方法.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词线性互补问题   模基矩阵分裂迭代法   预处理   二步方法     
Abstract: In this paper, we extend the two-steps modulus-based matrix splitting iteration method for solving linear complementarity problems by preconditioned technique. The convergence analysis of the proposed method is given when the system matrix is an H-matrix. Our results always improve some existing ones.
Key wordsLinear Complementarity Problem   Modulus-based matrix splitting iteration method   Precondition   Two-steps method   
收稿日期: 2016-05-12;
基金资助:

国家自然科学基金(11601340),广东省高性能计算学会开放基金项目(2017060108),广东省数据科学工程技术研究中心开放基金项目(2016KF11),韶关市科技计划项目(韶科[2016]44/15),韶关学院科研项目(S201501021).

通讯作者: 罗静,guluojing@163.com.     E-mail: guluojing@163.com
引用本文:   
. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32.
. A PRECONDITIONED TWO-STEPS MODULUS-BASEDMATRIX SPLITTING ITERATION METHOD FORSOLVING LINEAR COMPLEMENTARITYPROBLEMS OF H-MATRICES[J]. Mathematica Numerica Sinica, 2018, 40(1): 24-32.
 
[1] Cottle R W, Pang J S and Stone R E. The Linear Complementarity Problem[M]. SIAM Publisher, Philadelphia, 2009.
[2] Ferris M C and Pang J S. Engineering and economic applications of complementarity problems[J]. SIAM Reviews, 1997, 39:669-713.
[3] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2010, 17:917-933.
[4] Bai Z Z and Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2013, 20:425-439.
[5] Bai Z Z and Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numer. Algorithms, 2013, 62:59-77.
[6] Dong J L and Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems[J]. Numer. Linear Algebra Appl., 2009, 16:129-143.
[7] Hadjidimos A and Tzoumas M. Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem[J]. Linear Algebra Appl., 2009, 431:197-210.
[8] van Bokhoven W M G. Piecewise-linear Modelling and Analysis[M]. Proefschrift, Eindhoven, 1981.
[9] Li W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices[J]. Appl. Math. Lett., 2013, 26:1159-1164.
[10] Zhang L L and Ren Z R. Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Appl. Math. Lett., 2013, 26:638-642.
[11] Zhang L L. Two-step modulus based matrix splitting iteration for linear complementarity problems[J]. Numer. Algorithms, 2011, 57:83-99.
[12] Zhang L L. Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems. Journal of Optimization Theory and Applications[J]. 2014, 160:189-203.
[13] Zheng N, Yin J F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numer. Algorithms, 2013, 64:245-262.
[14] Liu S M, Zheng H, Li W. A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems[J]. CALCOLO, 2016, 53:189-199.
[15] Zheng H, Li W, Vong S. A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems[J]. Numer. Algorithms, 2017, 74:137-152.
[16] Li W and Zheng H. A preconditioned modulus-based iteration method for solving linear complementarity problems of H-matrices[J]. Linear and Multilinear Algebra, 2016, 64:1390-1403.
[17] Berman A and Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. SIAM Publisher, Philadelphia, 1994.
[18] Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity problem[J]. SIAM J. Matrix Anal. Appl., 1999, 21:67-78.
[19] Frommer A and Mayer G. Convergence of relaxed parallel multisplitting methods[J]. Linear Algebra Appl., 1989, 119:141-152.
[20] Hu J G, Estimates of||B-1 A|| and their applications[J]. Mathematica Numerica Sinica, 1982, 4:272-282.
[1] 骆其伦, 黎稳. 二维Helmholtz方程的联合紧致差分离散方程组的预处理方法[J]. 计算数学, 2017, 39(4): 407-420.
[2] 李琴. Stokes方程的一种预处理方法[J]. 计算数学, 2017, 38(2): 81-90.
[3] 赵莲, 赵永华, 迟学斌. 基于计算与通信重叠的稀疏矩阵-向量乘积及其在AMG中的应用[J]. 计算数学, 2015, 36(3): 197-214.
[4] 甘小艇, 殷俊锋. 二次有限体积法定价美式期权[J]. 计算数学, 2015, 37(1): 67-82.
[5] 席钧, 曹建文. 美式期权定价的分数阶偏微分方程组及其数值离散方法[J]. 计算数学, 2014, 35(3): 229-240.
[6] 朱雪芳. 求解鞍点问题的一类广义SSOR预条件子[J]. 计算数学, 2014, 35(2): 117-124.
[7] 张秀梅, 王川龙. 求解大型非对称线性系统的一种新的预处理方法[J]. 计算数学, 2014, 35(1): 28-34.
[8] 曹阳, 陶怀仁, 蒋美群. 鞍点问题的广义位移分裂预条件子[J]. 计算数学, 2014, 36(1): 16-26.
[9] 于春肖, 苑润浩, 穆运峰. 新预处理ILUCG法求解稀疏病态线性方程组[J]. 计算数学, 2014, 35(1): 21-27.
[10] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
[11] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194.
[12] 曹阳, 谈为伟, 蒋美群. 广义鞍点问题的松弛维数分解预条件子[J]. 计算数学, 2012, 34(4): 351-360.
[13] 张丽丽. 关于线性互补问题的模系矩阵分裂迭代方法[J]. 计算数学, 2012, 34(4): 373-386.
[14] 豆铨煜, 殷俊锋. 一类求解鞍点问题的广义不精确Uzawa方法[J]. 计算数学, 2012, 34(1): 37-48.
[15] 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 计算数学, 2011, 32(3): 183-195.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10