计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2018, Vol. 40 Issue (1): 1-23    DOI:
综述 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
水凝胶类软物质材料理论中的数学问题
张辉
北京师范大学数学科学学院, 数学与复杂系统教育部重点实验室, 北京 100875
MATHEMATICAL PROBLEMS IN SOFT MATTER LIKE HYDROGEL
Zhang Hui
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
 全文: PDF (1142 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 水凝胶是一种具有广泛应用前景的软物质材料,一直是材料学家、物理化学家们关心的热点,目前有很多实验和专利产品.其机理和模型的研究处于初期阶段,本文综述该领域的部分进展,包括形变、微结构和宏观性质等的数学模型和相关计算方法,一并列出一些亟待解决的问题.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词水凝胶类软物质   相变   微结构   宏观性质   可计算建模   计算方法     
Abstract: Hydrogel is a kind of polymeric materials, have attracted some theoretical and experimental studies. The new hydrogel predominately consists of MMS (macromolecular microsphere), chains and water molecules, which shapes its well-defined structure and high mechanical strength. But, how is it phase transition and forming these well-defined micro-structure? Why the hydrogels have such high mechanical strengths? what is the structure-property relationship? How do the structural factors affect, such as nanoparticle size, grafting density, polymer chain length, entanglement, and so on? Here we will review some mathematical progress to partly answer them, including phase transition, micro-structure, macro-property and related numerical methods. Meanwhile, we also present some mathematical problems to be solved.
Key wordssoft matter like hygrogel   phase transition   microstructure   macro-property,modeling computed   numerical methods   
收稿日期: 2017-02-16;
基金资助:

国家自然科学基金(11471046,11571045)和教育部中心高校基础研究基金.

引用本文:   
. 水凝胶类软物质材料理论中的数学问题[J]. 计算数学, 2018, 40(1): 1-23.
. MATHEMATICAL PROBLEMS IN SOFT MATTER LIKE HYDROGEL[J]. Mathematica Numerica Sinica, 2018, 40(1): 1-23.
 
[1] Tanaka T, Fillmore D, Sun S T, et al., Phase transitions in ionic gels[J]. Phys. Rev. Let., 1980, 45(20):1636-1639.
[2] Li Y, Tanaka T. Kinetics of swelling and shrinking of gels[J]. J. Chem. Phys., 1990, 92:1365-1371.
[3] Wang C, Li Y, Hu Z. Swelling kinetics of polymer gels[J]. Macromolecules, 1997, 30(16):4727-4732.
[4] Doi M. Gel dynamics[J]. J. Phys. Soc. Japan, 2009, 78(5):052001.
[5] Doi M. Soft matter phyiscs[M]. Oxford Unversity Press, Oxford, 2013.
[6] Cai S, Suo Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels[J]. J. Mech. Phys. Solids, 2011, 59(11):2259-2278.
[7] Fredrickson G H. The equilibrium theory of inhomogeneous polymers[M]. Oxford University Press, 2006.
[8] Muratov C, E W. Theory of phase separation kinetics in polymer-liquid crystal systems[J]. J. Chem. Phys., 2002, 116:4723-4734.
[9] Rajabian M, Dubois C, Grmela M. Suspensions of semiflexible fibers in polymeric fluids:rheology and thermodynamics[J]. Rheol. Acta, 2005, 44:521-535.
[10] Eslami H, Grmela M, Bousmina M. A mesoscopic tube model of polymer/layered silicate nanocomposites[J]. Rheol. Acta, 2009, 48:317-331.
[11] Wu D, Zhou C, Hong Z, Mao D, Bian Z. Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites[J]. Euro. Polymer J., 2005, 41:2199-2207.
[12] Zhao J, Morgan A B, Harris J D. Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion[J]. Polymer, 2005, 46:8641-8660.
[13] Li H. Smart Hydrogel Modeling[M]. Springer-Verlag, 2009.
[14] Hong W, Zhao X, Zhou J, Suo Z G. A theory of coupled diffusion and large deformation in polymeric gels[J]. J. Mech. Phys. Solids, 2008, 56:1779-1793.
[15] Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. A novel hydrogel with high mechanical strength:a macromolecular microsphere composite hydrogel[J]. Adv. Mater., 2007, 19:1622-1626.
[16] Leibler L. Theory of microphase separation in block copolymers[J]. Macromolecules, 1980, 13(1980):1602-1617.
[17] Zhai D, Zhang H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel[J]. Soft Matter, 2013, 9:820-825.
[18] Zhang L, Chen L, Du Q. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations[J]. J. Comp. Phys., 2010, 229:6574-6584.
[19] Chen R, Yang X F, Zhang H. Decoupled energy stable schemes for phase-field vesicle membrane model[J]. J. Comp. Phys., 2015, 302:509-523.
[20] Ma L N, Chen R, Yang X F, Zhang H. Numerical approximations for Allen-Cahn type phase field model of two-phase incompressible fluids with moving contact lines[J]. Comm. Comp. Phys., 2017, 21:867-889.
[21] Wu D T, Zhang H. Numerical investigation of the growth kinetics for macromolecular microsphere composite hydrogel ased on the TDGL Equation[J]. J. Theor. Comput. Chem., 2016, 15:1650064.
[22] Chen R, Ji G H, Yang X F, Zhang H. Decoupled energy stable schemes for Phase Field Vesicle Membrane Model[J]. J. Comp. Phys., 2015, 302:509-523.
[23] Chen R, Yang X F, Zhang H. Decoupled energy stable scheme for hydrodynamic Allen-Cahn phase field moving contact line model[J]. J. Comput. Math., to appear.
[24] Yuan C H, Zhang H. Self-consistent mean field model of hydrogel and its numerical simulation[J]. J. Theor. Comput. Chem., 2013, 12(6):1350048.
[25] Yao X M and Zhang H. Kinetic model for the large deformation of cylindrical gels[J]. J. Theor. Comput. Chem., 2014, 13(4):1450032.
[26] Zhang H. Strain-stress relation in macromolecular microsphere composite hydrogel[J]. Appl. Math. Mech., 2016, 37(11):1539-1550.
[27] Cahn J W, Hilliard J E. Free energy of a non-uniform system:I, interfacial free energy[J]. J.Chem. Phys., 1958, 28(2):258-267.
[28] Cahn J W, Hilliard J E. Free energy of a non-uniform system:Ⅲ, nucleation in a two-component incompressibel fluid[J]. J. Chem. Phys., 1959, 31:688-699.
[29] Okada M, Masunaga H, Furukawa H. Concentric pattern formation during phase separation induced by a cross-linking reaction[J]. Macromolecules, 2000, 33:7238-7240.
[30] Nwabunma D, Chiu H W, Kyu T. Theoretical investigation on dynamics of photopolymerizationinduced phase separation and morphology development in nematic liquid crystal/polymer mixtures[J]. J. Chem. Phys., 2000, 113:6429.
[31] Kyu T, Nwabunma D, Chiu H W. Theoretical simulation of holographic polymer-dispersed liquidcrystal films via pattern photopolymerization-induced phase separation[J]. Phys. Rev. E, 2001, 2001, 63:061802.
[32] Bray A J. Theory of phase-ordering kinetics[J]. Adv. Phys., 1994, 43:357-459.
[33] Ibanes M, Garcia-Ojalvo J, Toral R, et al. Noise-induced phase separation:Mean-field results[J]. Phys. Rev. E, 1999, 60:3597-3605.
[34] Flory P J. Principles of Polymer Chemistry[M]. Cornell University Press, New York, 1953.
[35] de Gennes P G. Dynamics of fluctuations and spinodal decomposition in polymer blends[J]. J. Chem. Phys., 1980, 72:4756-4763.
[36] Fialkowski M, Holyst R. Dynamics of phase separation in polymer blends revisited:Morphology, spinodal, noise, and nucleation[J]. Macromol. Theory Simul., 2008, 17:263-273.
[37] Chakrabarti A, Toral R, Gunton J D, et al. Dynamics of phase separation in a binary polymer blend of critical composition[J]. J. Chem. Phys., 1990, 92:6899-6909.
[38] Rubinstein M, Colby R H. Polymer Physics[M]. Oxford:Oxford University Press, 2003.
[39] Dai S, Du Q. Computational studies of coarsening rates for Cahn-Hilliard equation with phasedependent diffusion mobility[J]. J. Comp. Phys., 2016, 310:85-108.
[40] Dai S, Du Q, Weak solutions for the Cahn-Hilliard equation with degenerate mobility[J]. Arch. Rational Mech. Anal., 2016, 219:1161-1184.
[41] Du Q, Feng W, Yu P, Hu S, Liu Z, Chen L. A fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity[J]. Comm. Comput. Phys., 2009, 5:582-599.
[42] Yang X, Feng J J, Liu C and Shen J. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method[J]. J. Comp. Phys., 2006, 218:417-428.
[43] Yang X, Forest M G, Li H, Liu C, Shen J, Wang Q, Chen F. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids[J]. J. Comp. Phys., 2013, 236:1-14.
[44] Zhao J, Wang Q, Yang X. Numerical approximations to a new phase field model for immiscible mixtures of nematic liquid crystals and viscous fluids[J]. Comput. Meth. Appl. Mech. Eng., 2016, 310:77-97.
[45] Zhao J, Yang X, Li J and Wang Q. Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals[J]. SIAM. J. Sci. Comput., 2016, 38:A3264-A3290.
[46] Zhao J, Yang X, Shen J, Wang Q. A decoupled energy stable scheme for a hydrodynamic phasefield model of mixtures of nematic liquid crystals and viscous fluids[J]. J. Comp. Phys., 2016, 305:539-556.
[47] Chang K, Kril lⅡ C E, Du Q, Chen L. Evaluating microstructural parameters of three-dimensional grains generated by phase-filed simulation or other votex-based techniques[J]. Model. Simul. Materials Sci. Eng., 2012, 20:075009.
[48] Du Q, Chen L Q, Zhang L. mathematical and numericla aspects of phase-field approach to critical nuclei morphology in solid[J]. J. Sci. Comput., 2008, 37:890102.
[49] Shen J, Yang X. An efficient moving mesh spectral method for the phase-field model of two-phase flows[J]. J Comp. Phys., 2009, 228:2978-2992.
[50] Shen J, Yang X. Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows[J]. Chin. Ann. Math. Ser. B, 2010, 31:743-758.
[51] Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Disc. Conti. Dyn. Sys. -A, 2010, 28:1669-1691.
[52] Shen J and Yang X. A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities[J]. SIAM J. Sci. Comput., 2010, 32:1159-1179.
[53] Shen J and Yang X. Decoupled energy stable schemes for phase filed models of two phase complex fluids[J]. SIAM J. Sci. Comput., 2014, 36:N122-B145.
[54] Shen J and Yang X. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows[J]. SIAM J. Num. Anal., 2015, 53:279-296.
[55] Shen J, Yang X, Wang Q. On mass conservation in phase field models for binary fluids[J]. Comm. Compt. Phys, 2012, 13:1045-1065.
[56] Shen J, Yang X, Yu H. Efficient energy stable numerical schemes for a phase field moving contact line model[J]. J. Comp. Phys., 2015, 284:617-630.
[57] Yang X. Error analysis of stabilized semi-implicit method of Allen-Cahn equation[J] Disc. Conti. Dyn. Sys.-B, 2009, 11:1057-1070.
[58] Yang X. Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends[J]. J. Comp. Phys., 2016, 302:509-523.
[59] Yang X, Han D. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal equation[J]. J. Comp. Phys., 2017, 330:1116-1134.
[60] Yang X, Ju L L. Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model[J]. Comput. Meth. Appl. Mech. Engrg., 2017, 315:691-712.
[61] Han D Z, Wang X M, Wu H. Existence and uniqueness of global weak solutions to a Cahe-HilliardStokes-Darcy system for two phase incompressible flows in karstic geometry[J]. J. Diff. Eqns, 2014, 257:3887-3933.
[62] Chen W B, Wang C, Wang X M, Wise S. A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection[J]. J. Sci. Comp., 2014, 59:574-601.
[63] Chen W B, Conde S, Wang C, Wang X M, Wise S. A linear energy stable nemerical scheme for a epitaxial thin film growth model without slope selection[J]. J. Sci. Comp., 2012, 52:546-562.
[64] Qiao Z H, Tang T and Xie H H. Error analysis of a mixed finite element method for the molecular bean epitaxy model[J]. SIAM J. Numer. Anal., 2015, 53:184-205.
[65] Li X, Qiao Z H and Zhang H. A second-order convex-splitting scheme for the Cahn-Hilliard equation with variable interfacial parameters[J]. J. Comput. Math., 2017, 35:693-710.
[66] Li X, Qiao Z H, Zhang H. An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation[J]. Sci. China Math., 2016, 59:1815-1834.
[67] E W, Ren W Q and Vanden-Eijnden E. String method for the study of rare events[J]. Phys. Rev. B, 2002, 66:052301.
[68] Zhang W, Li T J and Zhang P W. Numerical study for the nucleation of one-dimensional stochastic Cahn-Hilliard dynamics[J]. Commun. Math. Sci, 2012, 10:1105-1132.
[69] Li X, Ji G H, Zhang H. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation[J]. J. Comp. Phys., 2015, 283:81-97.
[70] Saad Y, Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Sci. Stat. Comput., 1986, 7:856-869.
[71] Nocedal J, Wright S J. Numerical Optimization[M]. New York:Springer-Verlag, 1999.
[72] Shen J, Wang C, Wang X M, et al. Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy:application to thin film epitaxy[J]. SIAM J. Numer. Anal., 2012, 50:105-125.
[73] Xu Z, Zhang H. Stabilitized semi-implicit numerical scheme for the Cahn-Hilliard with variable interfacial parameters[J]. J. Comput. Appl. Math., 2018, to appear.
[74] Jiang K, Wang C, Huang Y Q, Zhang P W. Discovery of new metastable patterns in diblock copolymers[J]. Comm. Comput. Phys., 2013, 14(2):443-460.
[75] Xu W Q, Jiang K, Zhang P W, Shi A C. A strategy to explore stable and metastable ordered phases of block copolymers[J]. J. Phys. Chem. B, 2013, 117:5296-5305.
[76] Helfand E. Block copolymer theory. Ⅲ. Statistical mechanics of the microdomain structure[J]. Macromolecules, 1975, 8(4):552-556.
[77] Helfand E, Wasserman Z R. Block copolymer theory:4. Narrow interphase approximation[J]. Macromolecules, 1976, 9(6):879-888.
[78] Ackerman D M, Delaney K, Fredrickson G H, Ganapathysubramanian B. A finite element approach to self-consistent field theory calculations of multiblock polymers[J]. J. Comp. Phys., 2017, 331:280-296.
[79] Matsen M W, Schick M. Stable and unstable phases of a diblock copolymer melt[J]. Phys. Rev. Let., 1994, 72(16):2660-663.
[80] Cochran E W, Garcia-Cervera C J, Fredrickson G H. Stability of the gyroid phase in diblock copolymers at strong segregation[J]. Macromolecules, 2006, 39(7):2449-2451.
[81] Jiang K, Xu W Q, Zhang P W. Analytic structure of the SCFT energy functional of multicomponent block copolymers[J]. Comm. Comp. Phys., 2015, 17(05):1360-1387.
[82] Jiang K, Zhang J, Liang Q. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts[J]. J. Phys. Chem. B, 2015, 119:14551-14562.
[83] Drolet F, Fredrickson G H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Phys. Rev. Let., 1999, 83(21):4317-4320.
[84] Rasmussen K, Kalosakas G. Improved numerical algorithm for exploring block copolymer mesophases[J]. J. Polymer Science Part B:Polymer Phys., 2002, 40(16):1777-1783.
[85] Tzeremes G, Rasmussen K, Lookman T, et al. Efficient computation of the structural phase behavior of block copolymers[J]. Phys. Rev. E, 2002, 65(4):33.
[86] Weiss G H, Maradudin A A. The Baker-Hausdorff formula and a problem in crystal physics[J]. J. Math. Phys., 1962, 3:771.
[87] Sides S W, Fredrickson G H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure[J]. Polymer, 2003, 44(19):5859-866.
[88] He C C, Jiao K X, Zhang X, et al. Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles[J]. Soft Matter, 2011, 7:2943-2952.
[89] Cai S Q, Lou Y C, Partha G, Agathe R, Suo Z G. Force generated by a swelling elastomer subject to constraint[J]. J. Mech. Phys. Solids 2010, 107:103-535.
[90] Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks swelling[J]. J. Chem. Phys., 1943, 11:521-526.
[1] 宋淑红, 王双虎. 各向异性扩散方程的高精度算法[J]. 计算数学, 2017, 38(4): 312-326.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10