计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2017, Vol. 39 Issue (4): 363-377    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
受参考价格影响的变质产品销售最优动态价格和保存技术投资的联合策略研究
袁晓1, 肖瑾2
1. 岭南师范学院 数学与统计学院, 湛江 524048;
2. 中山大学 数据科学与计算机学院, 广州 510006
RESEARCH ON COMBINED THE OPTIMAL DYNAMIC PRICE AND PRESERVATION TECHNOLOGY INVESTMENT STRATEGY FOR THE DETERIORATING PRODUCTS SALES WITH THE INFLUENCE OF THE REFERENCE PRICES
Yuan Xiao1, Xiao Jin2
1. School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 524048, China;
2. School of Data and Computer Science, Sun Yat-Sen University, Guangzhou 510006, China
 全文: PDF (484 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 参考价格一直在顾客购买决策中扮演着一个很重要的角色.首先,本文考虑参考价格的影响,针对一个变质产品的库存系统,建立一个联合考虑动态价格和保持技术投资的非线性规划模型,用来决定动态售出价格、保存技术投资和补给策略,使得零售商总利润最大化;然后,针对变质库存问题,推导出理论结果且阐述最优解的存在性;最后,针对所提出的模型给出一个逐次逼近优化算法,通过数值实验显示该算法是有效的.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词动态价格   变质产品   保存技术投资   非线性规划     
Abstract: The reference prices usually play a substantial role in customer purchase decisions. In this paper, aiming to the inventory systems about deteriorating products, a nonlinear programming model, combining the dynamic price with preservation technology investments, is built. One is used to determine the dynamic sales price, preserve technology investments and replenish strategy, for the maximize profits acquired by retailers. After that, some theoretical results are derived, and the existence of optimal solution is given. Finally, the model is effectively solved by a sequential approximate optimization algorithm by means of numerical tests.
Key wordsdynamic price   deteriorating products   preservation technology investment   nonlinear programming   
收稿日期: 2016-12-22;
基金资助:

广东省自然科学基金(2016A030307017),博士后基金(2016M602579)资助项目.

通讯作者: 袁晓     E-mail: yuanxiao312@126.com
引用本文:   
. 受参考价格影响的变质产品销售最优动态价格和保存技术投资的联合策略研究[J]. 计算数学, 2017, 39(4): 363-377.
. RESEARCH ON COMBINED THE OPTIMAL DYNAMIC PRICE AND PRESERVATION TECHNOLOGY INVESTMENT STRATEGY FOR THE DETERIORATING PRODUCTS SALES WITH THE INFLUENCE OF THE REFERENCE PRICES[J]. Mathematica Numerica Sinica, 2017, 39(4): 363-377.
 
[1] First Research. Grocery stores and supermarkets industry profile. Technical Report NAICS Code44511, 2005.
[2] Beck A, Bilby C, Chapman P. Shrinkage in Europe:Stock loss in the fast-moving consumer goods sector[J]. Security Journal, 2002, 15(4):25-39.
[3] Ferguson M E, Lystad E D, Alexopoulos C. Single Stage Heuristic for Perishable Inventory Control in Two-Echelon Supply Chains[J]. Perishable Inventory, 2006.
[4] Covert R P, Philip G C. An EOQ model for items with Weibull distribution deterioration[J]. AⅡE transactions, 1973, 5(4):323-326.
[5] Tadikamalla P R. An EOQ inventory model for items with gamma distributed deterioration[J]. AⅡE transactions, 1978, 10(1):100-103.
[6] Wee H M. Joint pricing and replenishment policy for deteriorating inventory with declining market[J]. International Journal of Production Economics, 1995, 40(2):163-171.
[7] Hsu P H, Wee H M, Teng H M. Preservation technology investment for deteriorating inventory[J]. International Journal of Production Economics, 2010, 124(2):388-394.
[8] Dye C Y. The effect of preservation technology investment on a non-instantaneous deteriorating inventory model[J]. Omega, 2013, 41(5):872-880.
[9] He Y, Huang H. Optimizing inventory and pricing policy for seasonal deteriorating products with preservation technology investment[J]. Journal of Industrial Engineering, 2013, 2013(4).
[10] Greenleaf E A. The impact of reference price effects on the profitability of price promotions[J]. Marketing science, 1995, 14(1):82-104.
[11] Fibich G, Gavious A, Lowengart O. Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects[J]. Operations Research, 2003, 51(5):721-734.
[12] Fibich G, Gavious A, Lowengart O. Optimal price promotion in the presence of asymmetric reference-price effects[J]. Managerial and Decision Economics, 2007, 28(6):569-577.
[13] Popescu I, Wu Y. Dynamic pricing strategies with reference effects[J]. Operations Research, 2007, 55(3):413-429.
[14] Dye C Y, Yang C T. Optimal dynamic pricing and preservation technology investment for deteriorating products with reference price effects[J]. Omega, 2016, 62:52-67.
[15] Aubin J P and Cellina A. Differential Inclusions[M]. Springer-Verlag, Berlin Heiderberg New York Tokyo, 1984, 53.
[16] Albadi M H, EI-Saadany E. A Summary of demand response electricity morkets[J]. Electric Power Systems Research, 2008, 78(11):1089-1996.
[17] Song L, Xiao Y, vander Schaar M. Demand side management in smart grids using repeated game framework[J]. IEEE Journal on Communications, 2014, 32(7):1412-1424.
[18] Horn R A, Johnson C R. Matrix Analysis[M]. Cambridge, England:Cambridge university press, 2012, 217-219.
[19] Sven Dano, Nonlinear and Dynamic Programming[M]. Springer-Verlag, 1975, 259-261.
[20] Glaz B, Friedmann P, Lin L. Surrogate based optimization of helicopter rotor blades for vibration reduction in forward fight[J].Structural and Multidisciplinary Optimization, 2008, 35(4):341-363.
[21] Lian Y, Liou v.Multi-objective optimization using coupled response surface model and evolutionary algorithm[J]. AIAA Journal, 2005, 43(6):1316-1325.
[1] 孙清滢; 崔彬; 王长钰. 新非单调线搜索规则的Lampariello修正对角稀疏拟牛顿算法[J]. 计算数学, 2008, 30(3): 255-268.
[2] 孙清滢. 初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法[J]. 计算数学, 2004, 26(4): 401-412.
[3] 孙清滢,刘新海. 结合广义Armijo步长搜索的一类新的三项共轭梯度算法及其收敛特征[J]. 计算数学, 2004, 26(1): 25-36.
[4] 张菊亮,章祥荪,卓新建. 无正则性条件下的一个信赖域方法的全局收敛性[J]. 计算数学, 2002, 24(4): 437-450.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10