计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2017, Vol. 39 Issue (1): 81-97    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
双调和算子特征值问题的混合三角谱元方法
单炜琨1,2, 李会元3
1. 中国科学院软件研究所, 北京 100190;
2. 中国科学院大学, 北京 100190;
3. 中国科学院软件研究所, 北京 100190
A MIXED TRIANGULAR SPECTRAL ELEMENT METHOD OF BIHARMONIC EIGENVALUE PROBLEM
Shan Weikun1,2, Li Huiyuan3
1. Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100190, China;
3. Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF (1014 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对双调和算子特征值问题设计了基于混合变分形式的三角谱元逼近格式,其基函数采用指标为(-1,-1,-1)的广义Koornwinder多项式.在H1-及H01-正交谱元投影的逼近理论基础上,我们建立了双调和算子特征值与特征函数的收敛性估计;它关于网格尺寸h是最优的,关于多项式次数M是次优的.然而,在H02-正交谱元投影的最优估计假设前提下,关于M的次优收敛阶估计则提升为最优.此外,Koornwinder分片多项式逼近的结果还表明,在带权Besov空间范数的度量下,对于存在着区域角点奇性的双调和算子特征值问题,谱元方法的收敛阶能达到h-型有限元方法的2倍.最后,本文的数值实验结果展示了谱元逼近格式的高效性,同时也验证了相关理论的正确性.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词三角谱元   混合方法   双调和算子特征值   广义Koornwinder多项式   误差估计     
Abstract: A triangular spectral element approximation scheme using generalized Koornwinder polynomials of index (-1,-1,-1) is proposed and analyzed for the biharmonic eigenvalue problem based on its mixed variational formulation.Further,on the basis of approximation theories of the H1-and H01-orthogonal spectral element projections oriented to the secondorder equations,error estimates are eventually established for our mixed triangular spectral element method (TSEM),which are optimal with respect to the mesh size h and sub-optimal with respected to the polynomial degree M.However,under certain assumption for the H02-orthogonal spectral element projection,we can also obtain an optimal estimate with respect to M.The approximation results of piecewise Koornwinder polynomials show that,under the measurement in some weighted Besov spaces,TSEM converges twice as fast as the hversion finite element method if the eigenfunction of the biharmonic operator has corner singularity.Finally,numerical results show the effectivity of our mixed TSEM and illustrate our theories as well.
Key wordstriangular spectral element   mixed methods   biharmonic eigenvalues   generalized Koornwinder polynomials   error estimates   
收稿日期: 2016-05-03;
基金资助:

本研究课题受国家自然科学基金(No.91130014,No.11471312,No.91430216)资助.

引用本文:   
. 双调和算子特征值问题的混合三角谱元方法[J]. 计算数学, 2017, 39(1): 81-97.
. A MIXED TRIANGULAR SPECTRAL ELEMENT METHOD OF BIHARMONIC EIGENVALUE PROBLEM[J]. Mathematica Numerica Sinica, 2017, 39(1): 81-97.
 
[1] Brezzi F, Fortin M. Mixed and hybrid finite element methods[M]. Springer Science & Business Media, 2012.
[2] Scholtz R. A mixed method for fourth-order problems using the linear finite elements[J]. RAIRO Numer. Anal, 1978, 15:85-90.
[3] Roberts J E, Thomas J M. Mixed and hybrid methods[J]. Handbook of numerical analysis, 1991, 2:523-639.
[4] Bernardi C, Maday Y. Spectral methods[J]. Handbook of numerical analysis, 1997, 5:209-485.
[5] Bernardi C, Coppoletta G, Maday Y. Some spectral approximations of two-dimensional fourthorder problems[J]. Mathematics of computation, 1992, 59(199):63-76.
[6] Koornwinder T. Two-variable analogues of the classical orthogonal polynomials[J]. Theory and applications of special functions, 1975:435-495.
[7] Guo B Y, Shen J, Wang L L. Generalized Jacobi polynomials/functions and their applications[J]. Applied Numerical Mathematics, 2009, 59(5):1011-1028.
[8] Mercier B, Osborn J, Rappaz J, et al. Eigenvalue approximation by mixed and hybrid methods[J]. Mathematics of Computation, 1981, 36(154):427-453.
[9] Polizzi E. Density-matrix-based algorithm for solving eigenvalue problems[J]. Physical Review B, 2009, 79(11):115112.
[10] Guo B, Wang L L. Error analysis of spectral method on a triangle[J]. Advances in Computational Mathematics, 2007, 26(4):473-496.
[11] Li H, Shen J. Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle[J]. Mathematics of Computation, 2010, 79(271):1621-1646.
[12] Schwab C. p-and hp-finite element methods:Theory and applications in solid and fluid mechanics[M]. Oxford University Press, 1998.
[13] Canuto C G, Hussaini M Y, Quarteroni A M, et al. Spectral Methods:Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation)[M]. Springer-Verlag New York, Inc., 2007.
[14] Weikun Shan and Huiyuan Li. The triangular spectral element method for Stokes eigenvalues[J]. Math-ematics of Computation, 2016, Accepted.
[15] Maz'ya V. Sobolev Spaces:with Applications to Elliptic Partial Differential Equations[J]. 2011.
[16] Babuska I, Guo B. Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces. part I:Approximability of functions in the weighted Besov spaces[J]. SIAM Journal on Numerical Analysis, 2002, 39(5):1512-1538.
[17] Falk R S, Osborn J E. Error estimates for mixed methods[J]. RAIRO-Analyse num W rique, 1980, 14(3):249-277.
[18] Boffi D, Brezzi F, Gastaldi L. On the convergence of eigenvalues for mixed formulations[J]. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1997, 25(1-2):131-154.
[19] Blum H, Rannacher R, Leis R. On the boundary value problem of the biharmonic operator on domains with angular corners[J]. Mathematical Methods in the Applied Sciences, 1980, 2(4):556-581.
[20] Grisvard P. Elliptic problems in nonsmooth domains[M]. SIAM, 2011.
[21] Gerasimov T, Stylianou A, Sweers G. Corners give problems when decoupling fourth order equations into second order systems[J]. SIAM Journal on Numerical Analysis, 2012, 50(3):1604-1623.
[22] Babuška I, Guo B Q. Approximation properties of the h-p version of the finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 133(3):319-346.
[1] 赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4): 341-353.
[2] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[3] 刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.
[4] 王艳芳, 王然, 康彤. 一类带有铁磁材料参数的非线性涡流问题的A-φ有限元法[J]. 计算数学, 2016, 38(2): 125-142.
[5] 郑权, 高玥, 秦凤. Helmholtz方程外边值问题的基于修正的DtN边界条件的有限元方法[J]. 计算数学, 2016, 38(2): 200-211.
[6] 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[7] 赵智慧, 李宏, 方志朝. 非定常Stokes方程的全离散稳定化有限元格式[J]. 计算数学, 2014, 36(1): 85-98.
[8] 闵涛, 任菊成, 耿蓓. Chebyshev谱-Euler混合方法求解一类非线性Burgers方程[J]. 计算数学, 2013, 34(2): 81-88.
[9] 王风娟, 王同科. 一维抛物型方程第三边值问题的紧有限体积格式[J]. 计算数学, 2013, 34(1): 59-74.
[10] 陈红如, 陈绍春. 四阶椭圆问题的C0非协调元[J]. 计算数学, 2013, 35(1): 21-30.
[11] 李焕荣. 二维土壤水中溶质运移问题的全离散混合元法研究[J]. 计算数学, 2012, 33(3): 207-214.
[12] 刘洋, 李宏, 何斯日古楞, 高巍, 方志朝. 四阶抛物偏微分方程的H1-Galerkin混合元方法及数值模拟[J]. 计算数学, 2012, 34(3): 259-274.
[13] 王淑燕, 陈焕贞. 基于Crouzeix-Raviart元的界面浸入有限元方法及其收敛性分析[J]. 计算数学, 2012, 34(2): 125-138.
[14] 李宏, 罗振东, 安静, 孙萍. Sobolev方程的全离散有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(2): 163-172.
[15] 刘群, 孙萍, 罗振东. 二维土壤溶质输运方程的有限体积元格式[J]. 计算数学, 2012, 34(1): 57-67.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10