计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2013, Vol. 35 Issue (1): 49-58    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
粘弹性方程一种新的分裂正定混合元法
李先崇1, 孙萍1, 安静1, 罗振东2
1. 贵州师范大学数学与计算机科学学院, 贵阳 550001;
2. 华北电力大学数理学院, 北京 102206
A NEW SPLITTING POSITIVE DEFINITE MIXED FINITE ELEMENT METHOD FOR VISCOELASTIC EQUATION
Li Xianchong1, Sun Ping1, An Jing1, Luo Zhendong2
1. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China;
2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
 全文: PDF (404 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文用分裂正定混合有限元方法研究二阶粘弹性方程. 首先构造一种新的分裂正定混合变分形式和基于这种分裂正定混合变分形式关于时间的半离散格式, 然后绕开关于空间变量的半离散化格式, 直接从时间半离散出发构造出全离散化的分裂正定混合有限元格式, 并给出这种分裂正定混合有限元解的误差估计. 这种研究思路使得理论论证变得更简单,这是处理二阶粘弹性方程的一种新的尝试.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词二阶粘弹性方程   分裂正定混合有限元方法   误差分析     
Abstract: In this paper, a second-order viscoelastic equation is studied with a splitting positive definite mixed finite element method. A new splitting positive definite mixed variational form and a semi-discrete formulation with respect to time based on the splitting positive definite mixed variational form are established first. And then, a fully discrete splitting positive definite mixed finite element formulation is established directly from the semi-discrete formulation with respect to time. Finally, the error estimates of the splitting positive definite mixed finite element solutions are provided. The studied approaches could make theoretical argumentation simpler and more convenient, which is a new study attempt for second-order viscoelastic equation.
Key wordssecond-order viscoelastic equation   splitting positive definite mixed finite element method   error analysis   
收稿日期: 2012-06-21;
基金资助:

国家自然科学基金项目(批准号:11271127和11061009)、贵州省科技计划课题(批准号:黔科合J字[2011]2367)和河北省自然科学基金项目(批准号:A2010001663)资助.

引用本文:   
. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58.
. A NEW SPLITTING POSITIVE DEFINITE MIXED FINITE ELEMENT METHOD FOR VISCOELASTIC EQUATION[J]. Mathematica Numerica Sinica, 2013, 35(1): 49-58.
 
[1] 罗振东. 混合有限元法基础及其应用[M].北京:科学出版社, 2006.
[2] Zhang J, Yang D. A splitting positive definite mixed element method for second-order hyperbolicequations[J]. Numerical Methods for Partial Differential Equations, 2009, 25(3): 622-636.
[3] Liu Y, Li H, Gao W, He S, Wang J. Splitting positive definite mixed element method for viscoelasticitywave equation[J]. Frontiers of Mathematics in China, 2012, 7(4): 725-742.
[4] Guo H. A splitting positive definite mixed finite element method for two classes of integrodifferentialequations[J]. Journal of Applied Mathematics and Computing, 2012, 39(1-2), 271-301.
[5] Gurtin M, Pipkin A. A general theory of heat conduction with finite wave speeds[J]. Arch RationMech. Anal, 1968, 31: 113-126.
[6] Yuan Y R. Finite difference method and analysis for three-dimensional semiconductor device ofheat conduction[J]. Sci China Ser A, 1996, 11: 21-32.
[7] Yuan Y R. Wang H. Error estimates for the finite element methods of nonlinear hyperbolic equations[J]. J Systems Sci Math Sci, 1985, 5(3): 161-171.
[8] Adams R A. Sobolev Spaces[M]. Academic Press, New York, 1975.
[9] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. North-Holland, Amsterdam,1978.
[10] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. Springer-Verlag, New York,1991.
[1] 李宏, 周文文, 方志朝. Sobolev方程的CN全离散化有限元格式[J]. 计算数学, 2013, 35(1): 40-48.
[2] 李宏, 孙萍, 尚月强, 罗振东. 粘弹性方程全离散化有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(4): 413-424.
[3] 张铁, 李铮. 一阶双曲问题间断有限元的后验误差分析[J]. 计算数学, 2012, 34(2): 215-224.
[4] 袁占斌, 聂玉峰, 欧阳洁. 基于泰勒基函数的移动最小二乘法及误差分析[J]. 计算数学, 2012, (1): 25-31.
[5] 腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的时间二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373-386.
[6] 陈全发, 冯光, 傅尧. 一类分数阶常微分方程初值问题的预校算法[J]. 计算数学, 2009, 31(4): 435-448.
[7] 孙萍, 罗振东, 周艳杰. 热传导对流方程基于POD的差分格式[J]. 计算数学, 2009, 31(3): 323-334.
[8] 刘长河,代西武,汪元伦. 分块三对角方程组的数值解法[J]. 计算数学, 2008, 29(1): 39-48.
[9] 沈智军,袁光伟,沈隆钧. 离散纵标方法诸格式的误差分析[J]. 计算数学, 2002, 24(2): 219-228.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10