Abstract:
In this paper, a new DL-type conjugate gradient method is proposed for solving nonconvex unconstrained optimization problems. Different from the existent ones, a new modified Armijo-type line search rule is constructed to give both the steplength and the conjugated parameter being used to determine a search direction in the mean time at each iteration. Under weak conditions, the global convergence of the developed algorithm is established. Numerical experiments show the efficiency of the algorithm, particularly in comparison with the similar ones available in the literature.
. A NEW DL-TYPE CONJUGATE GRADIENT METHOD FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS[J]. Mathematica Numerica Sinica, 2012, 34(3): 297-308.
[1]
An Xiaomin, Li Donghui, Xiao Yunhai. Sufficient descent directions in unconstrained optimization[J]. Comput. Optim. Appl., 2011, 48: 515-532.
[2]
Andrei N. Acceleration of conjugate gradient algorithms for unconstrained optimization[J]. Appl.Math. Comput., 2009, 213: 361-369.
[3]
Andrei N. New accelerated conjugate gradient algorithms as a modification of Dai-Yuan’s computationalscheme for unconstrained optimization[J]. Journal of computational and Applied Mathematics,2010, 234: 3397-3410.
[4]
Andrei N. Open problems in conjugate gradient algorithms for unconstrained optimization[J].Bulletin of the Malaysian Mathematical Sciences Society, 2011, 34(2): 319-330.
[5]
Birgin E, Mart′?nez J M. A spectral conjugate gradient method for unconstrained optimiztion[J].Appl. Math. Optim., 2001, 43: 117-128.
[6]
Dai Yuhong. Convergence of conjugate gradient methods with constant stepsizes[J]. OptimizationMethods and Software, 2011, 26(6): 895-909.
[7]
Dai Yuhong. A family of hybrid conjugate gradient methods for uncon- strained optimization[J].Math. Comput., 2003, 72: 1317-1328.
[8]
Dai Yuhong, Liao Lizhi. New conjugacy conditions and related nonlinear conjugate gradient methods[J]. Appl. Math. Optim., 2001, 43: 87-101.
[9]
Du Shouqiang, Chen Yuanyuan. Global convergence of a modified spectral FR conjugate gradientmethod[J]. App. Math. Comput., 2008, 202: 766-770.
[10]
Gilbert J C, Nocedal J. Global convergence properties of conjugate gradient methods for optimization[J]. SIAM J. Optim., 1992, 2(1): 21-42.
[11]
Grippo L, Lucidi S. A globally convergent version of the Polak-Ribiére conjugate gradientmethod[J]. Math. Prog., 1997, 78: 375-391.
[12]
Hager W W, Zhang H. A new conjugate gradient method with guaranteed descent and an efficientline search[J]. SIAM Journal on Optimization, 2005, 16: 170-192
[13]
Jorge J Moré, Burton S Garbow, Kenneth E Hillstrom. Testing unconstrained optimization software[J]. ACM Transactions on Mathematical Software, 1981, 7(1): 17-41.
[14]
Nocedal J, Wright S J. Numerical Optimization, Second Edition, Springer Verlag, New York,2006.
[15]
Shi Zhengjun, Shen Jie. Convergence of the Polak-Ribiére-Polyak conjugate gradient method[J].Nonlinear Analysis, 2007, 66: 1428-1441.
[16]
Wan Zhong, Hu Chaomin, Yang Zhanlu. A Spectral PRP Conjugate Gradient Methods for NonconvexOptimization Problem Based on Modified Line Search[J]. Discrete and Continuous DynamicalSystems: Series B, 2011, 16(4): 1157-1169.
[17]
Wan Zhong, Yang Zhanlu, Wang Yalin. New spectral PRP conjugate gradient method for unconstrainedoptimization[J]. Appl. Math. Letter, 2011, 24: 16-22.
[18]
Wei Zengxin, Li Guoyin, Qi Liqun. Global convergence of the Polak-Ribiere-Polyak conjugate gradientmethod with an Armijo-type inexact line search for nonconvex unconstrained optimizationproblems[J]. Mathematics of Computation, 2008, 77: 2173-2193.
[19]
Yu Gaohang, Guan Lutai, Wei Zengxin. Globally convergent Polak-Ribiére-Polyak conjugate gradientmethods under a modified Wolfe line search[J]. Appl. Math. Comput., 2009, 215(8): 3082-3090.
[20]
Yuan Gonglin, Lu Xiwen, Wei Zengxin. A conjugate gradient method with descent direction forunconstrained optimization[J]. J. Comput. Appl. Math., 2009, 233(2): 519-530.
Zhang Li, Zhou Weijun, Li Donghui. A descent modified Polak-Ribiére-Polyak conjugate gradientmethod and its global convergence[J]. IMA J. Numer. Anal., 2006, 26: 629-640.
[23]
Zhang Li, Zhou Weijun, Li Donghui. Global convergence of a modified Fletcher-Reeves conjugategradient method with Armijo-type line search[J]. Numer. Math., 2006, 104: 561-572.