Abstract:
Based on Laplace eigen-structure over three special triangle domains (regular triangle, isoceles triangle and triangle with (30°, 60°, 90°)), we propose a unified basis to compute all Laplace eigenvalues over an arbitrary triangle with mixed numerical and symbolic computation. And a class of approximate formulas for evaluating all eigenvalues over an arbitrary triangle as λm,n≈π2/24S2(h12(7m2-12mn+7n2)+h22(3m2-4mn+3n2)-2h32(m2-4mn+n2)),Especially, for the smallest eigenvalue λmin≈π2/S2 11h12+7h22+6h32/24,where S is the area of the triangle with three lengths h1≤h2≤h3.And it can be as a new quality of 2-D triangle grid for 2-nd PDE problems as q(T):=3h32/16S2 11h12+7h22+6h32/24.To reflect the influence of the three side-lengths on the eigenvalues over an arbitrary triangle, we put the above three basis together and use numerical computation with some symbolic. This hybrid algorithm may a way to raise the accuracy of eigenvalues in computing.
. PRE-TRANSFORMED METHODS FOR EIGEN-PROBLEMS Ⅱ: EIGEN-STRUCTURE FOR LAPLACE EIGEN-PROBLEM OVER ARBITRARY TRIANGLES[J]. Mathematica Numerica Sinica, 2012, 34(1): 1-24.
[1]
Fletcher R, Reeves C. Function minimization by conjugate gradients[J]. Computer Journal, 1964, 7: 149-154.
[2]
Polak E, Ribiére G. Note surla convergence de directions conjugées[J]. Rev. Francaise Informat Recherche Operationelle 3e Année, 1969, 16(3): 35-43.
[3]
Polyak B T. The conjugate gradient method in extreme problems[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9: 94-112.
[4]
Hestenes M R, Stiefel E. Method of conjugate gradient for solving linear equations[J]. Journal of Research of National Bureau of Standards, 1952, 49: 409-436.
[5]
Dai Y H, Yuan Y X. A nonlinear conjugate gradient method with a strong global convergence property[J]. SIAM Journal on Optimization, 1999, 10: 177-182.
[6]
Yao S W, Wei Z X and Huang H. A note about WYL’s conjugate gradient method and its application[J]. Applied Mathematics and computation, 2007, 191: 381-388.
[7]
Zhang L. An imporoved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation[ J]. Applied Mathematics and computation, 2009, 215: 2269-2274.
[8]
Yuan G L, Lu X W. A modified PRP conjugate gradient method[J]. Annals of Operations Research, 2009, 166: 73-90.