计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2011, Vol. 33 Issue (2): 125-132    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一类带参数的有理三次三角Hermite插值样条
谢进1,2, 檀结庆2, 刘植2, 李声锋3
1. 合肥学院 数学与物理系 合肥 230601;
2. 合肥工业大学 计算机与信息学院 合肥 230009;
3. 蚌埠学院 数学与物理系 安徽蚌埠 233000
A CLASS OF RATIONAL CUBIC TRIGONOMETRIC HERMITE INTERPOLATING SPLINES WITH PARAMETERS
Xie Jin1,2, Tan Jieqing2, Liu Zhi2, Li Shengfeng3
1. Department of Mathematics and Physics, Hefei University, Hefei 230601, China;
2. School of Computer & Information, Hefei University of Technology, Hefei 230009, China;
3. Department of Mathematics and Physics, Bengbu College, Bengbu 233000, Anhui, China
 全文: PDF (538 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 

给出一种带有参数的有理三次三角Hermite插值样条, 具有标准三次Hermite插值样条相似的性质. 利用参数的不同取值不但可以调控插值曲线的形状, 而且比标准三次Hermite插值样条更好地逼近被插曲线. 此外, 选择合适的控制点, 该种插值样条可以精确表示星形线和四叶玫瑰线等超越曲线.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词Hermite插值样条   有理三次三角Hermite插值样条   逼近   超越曲线     
Abstract

A class of rational cubic trigonometric Hermite interpolating splines with parameters is presented in this paper, which shares the same properties of standard cubic Hermite interpolating splines. The shape of the interpolation curves not only can be adjusted, but also more approximates the interpolated curves than standard cubic Hermite interpolating splines with taking different values of parameters. Moreover, by selecting proper control points, the spline curves can represent transcendantal curves exactly, such as tetracuspid and quadrifolium.

Key wordscubic Hermite interpolating spline   rational cubic trigonometric Hermite interpolation spline   approximation   transcendental curve   
收稿日期: 2009-08-11;
基金资助:

国家自然科学基金资助项目(61070227);教育部科学技术研究重大项目(309017);教育部博士点基金(20070359014); 安徽省教育厅教研重点项目(20100935);合肥学院科研重点项目(11KY02ZD).

引用本文:   
. 一类带参数的有理三次三角Hermite插值样条[J]. 计算数学, 2011, 33(2): 125-132.
. A CLASS OF RATIONAL CUBIC TRIGONOMETRIC HERMITE INTERPOLATING SPLINES WITH PARAMETERS[J]. Mathematica Numerica Sinica, 2011, 33(2): 125-132.
 
[1] Schmidt J W., He B W. Positivity of Cubic Polynomials on Intervals and Positive Spline Interpolation[J]. BIT, 1988, 28(2):340-352
[2] Duan Qi, Xu Gongxue, Liu Aikui, et al. Constrained Interpolation Using Rational Cubic Spline With Linear Denominators[J]. Korean J. Comput. Appl. Math.1999, 6(1) 203-215.
[3] Duan Qi, Djidjeli K, Price W. G. Some Properties of a Constrained Rational Cubic Spline with Linear Denominator [J]. Korean J. Comput. Appl. Math.2000, 7(2): 397-405.
[4] Duan Qi, Zhang H.L, Lai X., et al. Constrained Rational Cubic Spline and Its Application [J]. Computational Mathematics, 2001, 19(2):143-150.
[5] Duan Qi, Djidjeli K, Price W. G., et al. A Rational Cubic Spline Based on Function Values [J]. Computers and Graphics, 1998, 22(4): 479-486.
[6] Lyche, L L Schumaker, S Stanley. Quasi-interpolants Based on Trigonometric Splines[J]. Journal of Approximation Theory, 1998, 95:280-309.
[7] J M Peñ;a. Shape Preserving Representations for Trigonometric Polynomials[J]. Advances in Computational Mathematics, 2000, 12:133-149
[8] Tan Jieqing, Su Benyue. A class of generalized trigonometric polynomial curves with a shape parameter, In: Proceedings of International Conference on Numerical Analysis and Applied Mathematics 2005, pp. 523-526, T.E.Simos, G.Psihoyios, Ch.Tsitouras Eds., Wiley-VCH Verlag GmbH Co. KgaA, Weinheim, 2005.
[9] Zhang Jiwen. C-curves: An Extension of Cubic Curves [J]. Computer Aide Geometric Design, 1996, 13(9): 199-217.
[1] 武见, 张凯院, 刘晓敏. 求多变量线性矩阵方程组自反解的迭代算法[J]. 计算数学, 2011, 32(2): 105-116.
[2] 刘琳, 唐月红. 一类四次有理样条的形状控制及其逼近性质[J]. 计算数学, 2010, 31(4): 241-252.
[3] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.
[4] 周海林. 矩阵方程AXB + CXD = F对称解的迭代算法[J]. 计算数学, 2010, 32(4): 413-422.
[5] 王江涛, 张忠志, 谢冬秀, 雷秀仁. 埃尔米特自反矩阵的广义逆特征值问题与最佳逼近问题[J]. 计算数学, 2010, 31(3): 232-240.
[6] 马明, 刘华. 基于最小平方误差逼近的线性阀体的设计[J]. 计算数学, 2010, 31(3): 214-222.
[7] 郑凤芹, 张凯院. 求多变量线性矩阵方程组自反解的迭代算法[J]. 计算数学, 2010, 31(1): 39-54.
[8] 陈全发, 冯光, 傅尧. 一类分数阶常微分方程初值问题的预校算法[J]. 计算数学, 2009, 31(4): 435-448.
[9] 袁飞, 张凯院. 矩阵方程AXB + CXTD=F自反最小二乘解的迭代算法[J]. 计算数学, 2009, 30(3): 195-201.
[10] 庞宏奎, 黎稳. 求解对称鞍点问题的修正Uzawa方法[J]. 计算数学, 2009, 31(3): 231-242.
[11] 陈世军, 张凯院. 一类Lyapunov 型矩阵方程组的中心对称解及其最佳逼近[J]. 计算数学, 2009, 30(2): 119-129.
[12] 江力, 朱善华,吕勇. a尺度紧支撑插值正交多小波的平衡性[J]. 计算数学, 2009, 30(1): 10-20.
[13] 石东洋, 谢萍丽, 于志云. 各向异性网格下的双三次Hermite元的超逼近分析[J]. 计算数学, 2008, 30(4): 337-348.
[14] 谢冬秀; 张忠志. 对称广义中心对称矩阵模型修正的矩阵逼近法及其扰动性[J]. 计算数学, 2008, 30(3): 247-254.
[15] 尚丽娜,张凯院,陈梅枝. 求矩阵方程AXB=C的双对称最小二乘解的迭代算法[J]. 计算数学, 2008, 29(2): 126-135.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10