计算数学
       首页 |  期刊介绍 |  编委会 |  投稿指南 |  期刊订阅 |  下载中心 |  留言板 |  联系我们 |  在线办公 | 
计算数学  2011, Vol. 33 Issue (1): 69-76    DOI:
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
非线性随机延迟微分方程Heun方法的数值稳定性
王文强1,2, 陈艳萍3
1. 湘潭大学数学与计算科学学院, 湖南湘潭 411105;
2. 湘潭大学土木工程与力学学院, 湖南湘潭 411105;
3. 华南师范大学数学科学学院, 广州 510631
NUMERICAL STABILITY OF HEUN METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS
Wang Wenqiang1,2, Chen Yanping3
1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China;
2. Civil Engineering & Machanics College, Xiangtan University, Xiangtan 411105, Hunan, China;
3. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
 全文: PDF (395 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 

本文讨论一般非线性随机延迟微分方程Heun方法的数值稳定性,证明了如果问题本身满足零解是均方指数稳定和均方渐近稳定的充分条件,则当方程的漂移项进一步满足一定的条件时,Heun方法是MS-稳定的, 带线性插值的Heun方法是均方指数稳定的和GMS-稳定的理论结果. 文末的数值试验进一步验证了所得的相关结论.

服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词随机延迟微分方程   Heun方法   插值   均方指数稳定   MS-稳定   GMS-稳定     
Abstract

In this paper, the authors investigated the numerical stability of Heun methods for nonlinear stochastic delay differential equations. When the analytical solution satisfies the conditions of mean-square stability, and if the drift term satisfy some restrictions, then the Heun methods with linear interpolation procedure is exponential mean-square stable and GMS-stable, the Heun methods is mean-square stable(MS-stable). Moreover, these results are also verified by some numerical examples.

Key wordsstochastic delay differential equations   Heun methods   interpolation   exponential mean-square stability   MS-stability   GMS-stability   
收稿日期: 2009-11-03;
基金资助:

广东省高等学校珠江学者计划、国家自然科学基金(10871207)、973项目(2005CB321703)、教育部高校博士点基金(20094301110001)、湖南省自科基金(09JJ3002)和湘潭大学博士后科学基金资助项目.

引用本文:   
. 非线性随机延迟微分方程Heun方法的数值稳定性[J]. 计算数学, 2011, 33(1): 69-76.
. NUMERICAL STABILITY OF HEUN METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2011, 33(1): 69-76.
 
[1] Christopher T H Baker. Evelyn Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2005, 184: 404-427.
[2] Xuerong Mao. Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations[J]. J. Comput. Appl. Math., 2007, 200: 297-316.
[3] Yaozhong Hu, Salah-Eldin A. Mohammed, Feng Yan. Discrete-time approximations of stochastic differential systems with memory. Dept. Mathematics[OL]. Southern Illinois Univ., Carbondale. Available at http://sfde.math.siu.edu/recentpub.html.2001.
[4] Yaozhong Hu, Salah-Eldin A. Mohammed, Feng Yan. Discrete-time approximations of stochastic delay equations: the Milstein scheme[J]. The Annals of Probability, 2004, 32(1A): 265-314.
[5] Wanrong Cao, Mingzhu Liu, Zhencheng Fan. MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J]. Applied Mathematics and Computation, 2004, 159: 127-135.
[6] Zhiyong Wang, Chengjian Zhang. An analysis of stability of Milstein method for stochastic differential equations with delay[J]. Computers and Mathematics with Applications, 2006, 51: 1445-1452.
[7] Norbert Hofmann, Thomas Müller-Gronbach, A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag[J]. Journal of Computational and Applied Mathematics, 2006, 197: 89-121.
[8] 王文强, 黄山, 李寿佛. 非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J]. 计算数学, 2007, 29(2): 217-224. 浏览
[9] 王文强, 李寿佛, 黄山. 非线性随机延迟微分方程Euler-Maruyama方法的收敛性[J]. 系统仿真学报, 2007, 19(17): 3910-3913.
[10] 王文强, 李寿佛, 黄山. 非线性随机延迟微分方程半隐式Euler方法的收敛性[J]. 云南大学学报(自然科学版), 2008, 30(1): 11-15.
[11] Grüne L, Kloeden P. E. Pathwise approximation of random ordinary differential equations[J]. BIT, 2001, 41(4): 711-721.
[1] 王武, 冯仰德, 迟学斌. 多层快速多极子方法的快速插值[J]. 计算数学, 2011, 33(2): 145-156.
[2] 谢进, 檀结庆, 刘植, 李声锋. 一类带参数的有理三次三角Hermite插值样条[J]. 计算数学, 2011, 33(2): 125-132.
[3] 范馨月, 杨一都. 非自共轭椭圆特征值问题有限元插值校正[J]. 计算数学, 2011, 33(1): 15-24.
[4] 谭英贤, 甘四清, 王小捷. 随机延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2011, 33(1): 25-36.
[5] 徐应祥, 关履泰, 许伟志. 三奇次散乱点多项式自然样条插值[J]. 计算数学, 2011, 33(1): 37-47.
[6] 刘琳, 唐月红. 一类四次有理样条的形状控制及其逼近性质[J]. 计算数学, 2010, 31(4): 241-252.
[7] 邓四清, 方逵, 谢进, 陈福来, 陆海波. 一种新的带参数双三次有理插值样条的有界性与点控制[J]. 计算数学, 2010, 32(4): 337-348.
[8] 王文强, 陈艳萍. 线性中立型随机延迟微分方程Euler方法的均方稳定性[J]. 计算数学, 2010, 32(2): 206-212.
[9] 谢进, 檀结庆, 李声锋, 邓四清. 非均匀的二次三角双曲加权样条曲线[J]. 计算数学, 2010, 32(2): 147-156.
[10] 胡鹏, 黄乘明. 线性随机延迟积分微分方程Euler-Maruyama方法的稳定性[J]. 计算数学, 2010, 32(1): 105-112.
[11] 张浩敏, 甘四清, 胡琳. 随机比例方程带线性插值的半隐式Euler方法的均方收敛性[J]. 计算数学, 2009, 31(4): 379-392.
[12] 许伟志, 关履泰, 韩乐. 散乱数据(2m-1,2n-1)次多项式自然样条插值[J]. 计算数学, 2009, 30(4): 255-265.
[13] 梁学章, 张明, 高占恒, 车翔玖. 关于球面上的一种Hermite插值[J]. 计算数学, 2009, 31(4): 407-418.
[14] 陈全发, 冯光, 傅尧. 一类分数阶常微分方程初值问题的预校算法[J]. 计算数学, 2009, 31(4): 435-448.
[15] 胡宏伶, 陈传淼, 谢资清. 外推瀑布多网格法(EXCMG)---大规模求解椭圆问题的新算法[J]. 计算数学, 2009, 31(3): 261-274.

Copyright 2008 计算数学 版权所有
中国科学院数学与系统科学研究院 《计算数学》编辑部
北京2719信箱 (100190) Email: gxy@lsec.cc.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发
技术支持: 010-62662699 E-mail:support@magtech.com.cn
京ICP备05002806号-10