We propose a new family of trust region algorithms for unconstrained optimization problems which is combining traditional trust region method with a nonmonotone Wolfe line search technique. The new algorithm solves the trust region subproblem only once at each iteration, furthermore, the matrix approximation to the Hessian simultaneously satisfies the quasi-Newton condition at each iteration and maintains its positive definiteness. Under certain conditions, the global convergence and strong global convergence of the algorithm are proved. Numerical results show that the algorithm inherits the advantages of the nonmonotone schemes and is meaningful to some optimization problems.
E Michael Gertz. Combination trust-region line search methods for unconstrained optimization[R]. University of California San Zdiego, 1999.
[3]
Nocedal J, Yuan Y X. Combining trust region and line search techniques[R]. Technical Report, NAM06, Dept of Computer Science, Northwestern University, Illinois, USA, 1991.
[4]
Nocedal J, Yuan Y X. Combining Trust Region and Line Search Techniques[J]. Advances in Nonlinear Programming, 1998, 153-175.
[5]
袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社,1997, 154-166.
[6]
E Michael Gertz, A quasi-Newton trust-region method[J]. Mathematical Programming, 2004, 100(3): 447-470.
[7]
Grippo L, Lucidi S. A global convergence version of the Plak-Ribiére conjugate gradient method[J]. MathematicalProgramming, 1997, 78: 375-391.
[8]
Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newton's method[J]. SIAM J.Numer.Anal., 1986, 23(4): 707-716.
[9]
Zhang H C, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM J. Optim, 2004, 14(4): 1043-1056.
[10]
席少霖. 非线性最优化方法[M]. 北京: 高等教育出版社, 1992, 102-112.
[11]
Deng N Y, Xiao Y, Zhou F J. A nonmonotonic trust region algorithm[J]. Journal of optimization Theory and Applications, 1993, 76(2): 259-285.
[12]
Jorge J Moré, Burton S Garbow, Kenneth E Hillstrom. Testing Unconstrained Optimization Software[J]. ACM Transactions on Mathematical Software, 1981, 7(1): 17-41.